
AGARI)-AG-3 II

NORTH ATI-AN IC TRI-A T ORGiANIZATION

AW,' ISORY GROUt'FOR A[ROSI'ACE RIESEARCiI ANt) DItVII'MItF I

10O(ANISA1 ION D)1. -IRAHT 1)1 ItATIANTIOUL NOR)

AGiARDograph No.311

COMPUTATIONAL FLUID DYNAMICS: ALGORITH-MS & SI.PERCOMPUITERS

b\

W.Gcntzsch
Rongtgenstrassc 42

D)-840t2 Neutraubling
Federal Republic of Germans

and]

K.W.Nevss.
Manager. R & 1) Programs
Boeing Computer Services

12824 NE 135th St. F
Kirkland. WA 98034 ! Cp

United States V

Edited by

H.Yoshihara I
Boeing Military Airplane Company
A Division of the Boeing Company..............-.

Mail Stop 33-18
P.0, Box 37017-2107
Seattle - WA 98124

copy

This AGARDog-aph has been produced at the request of the Fluid Dynamics Panel of AGARD.

THE MISSION OF AGARD

According to its Charter. the mission of AGARI) is to bring together the leading personalities oif the NA If) nitiolts in
the fields uof science andi technoloigy relating to aeroispace for the follow ing purposes:

- Recoimmending effective ways for the member nations to use their research and deselupmet capahulitics tor thle
coimmon beniefit oft the NATO comniunitv:

- Providing scientific and technical advice and assistance toi the Military Committee in the field of aerospace research
and deveclopment (,Aith particular regard to it% milt iarN application):

- Continuously stimulating advances in the aerospace sciences relev ant toi strengthening the conmmon defceC10 flhisiiire:

- Improving the co-operatioin among member nations in a, iospace research and des elopntcttt:

- Exehanee oif scientific and technical information:

- Pros idiii assist nec toi membter nationt for tile purpose of inicreasi ng their scientific itid techtnical potenitial.

-Renderingi scienti fic andi technical assistance, as requested. to utiher NAt 10 iodies and] to nmettber nathins In
coinnection with r, search and develiipmnt prioblenms in the aerospace field.

The highest authority within AC;ARI) is the Natioinal Dl~eegates B~oard consisting ,! o ficia~iy appointed senior
representatives from eah member natioin. "The mission (if AGiARI) is carried iout through the Panels w hich are conmposed it
experts appiointed by the Natioinal D~elegates, thie Consultant and E xchange Programme and the Aerospace Applicat.ions
Studies Programme. The results of A(ARJ wo irk are reported to the member nations anid the N.ATOAuthorities thbroughl
the AGARD series of publicatioins oif which tis is otte.

Participatioin in A(iAR) aetiv ities is b\ im, itatioti onit atnd is itorniall limited to citticnsof the NATO) nation,

The cointenit if this publicatioin htas been reproiduced
directly from material supplied byx AGiARI or the authors.

4 Published March 198

Copyright 0 AGARD 198
Alt Rights Reserved

ISBN 92-835-01448-8

Printed bY Specialised Printing.Services Limited
40 Ciiell Lane, Lotughton, Essex 1610O 37

FORFP~4 ORI

Recent results hasve decmonst rated the potential jialt ofi current Nas icr .si. oniputcr progiamli o "Iitil,
complex v iscous oorial fliiAs ivet aero space %chicle, ,kr (he flight spectrumn Such imnprcssis denmonstrattions Could not
have been achiev ed a ithout the ad%,ineed numerical algoirithmns and the p a ertul supcircomputers such ats the (RA'i () BUHIR
series. Although improved inodelliig of the II. A equations is still needed. the major obstacle ii cioh ing a cos%(eftecci is design

tool is the large corrtii,2~ (,wt- i, i__ !5 -~* ;* . ,rr N- i okes equatioins, Despite the inore powertut coimputers with
multiple (P~s on the horizon. there is a need to develoip still inore eiist--efectise algtorithmns and toi priogranmme them it ai
manner that fulk utilises the potwerful eetiir hardw are features of the supercoimputers on hand. To accoimpl ish tlie lintcl. an
intimate knuua ledge ut the superciimputer hardA are and its imipact in the algourithnm is essential. iiid this "sill be the subject ot

the present AGiARI~ograph.

Though the preseti AGiARbugraph is primaril% directed it the active comtiputatulital fluid uianticist. it %kill sen c us,
valuable guide for cornputatiuial researchers in other disciplines as %%el as for etngineering mniagiers OfI pariticulir N altic is the
glo ssary of supercomnputer terms gis en in the Appendi\

The co-authuirs are Priifessir D r Vs ultnit (ient/seh. I echnical t. itiersits, at Reenisburg., and D r Ken Nev es. Boieing
(umpuier Sers iees inl Seattle. Bouthi au thi rs has% v esteti e ciperiec " itli supciittiputi tiu. hii ng detlai led lot i ,Alcdgci (it Ithc

hardware features (if current supereomputer\. and their impact on algoirithnms. (Their buuuuraphics fiulloiA (in the nest page)

The AGiARI) Fluid Dx narnies Panel atid the Elditoir w ish ti i express their appreciation to professoir D r (icnt,cli atid D r Nes cs
for their dedicated efoirt in proiducitng this timely A(iARI~ugraph. Dr I.Steutr. NASA-Ames Research (eter kittdl
cu lit r ib u te d a S e c ti o nii in (h atp te r .

1 o h h

I'dititr

AVANT-I'ROPOS

De rseent% resultats ilni denontre la v iabilit& potentielle Lies programmes d'ordunateur uLe Na\ ier Stu kes uctueils dest ties
a simuler des &oulcments visqucux et tiuurhilliunnaires coimplexes sur les vvhicules aucruspatiaux dans toiut Ic spectre de viil.
(Cs impresslinnantes dvmminstratiuins tauraient pas pu etre realisces sans, les algorithms numeriques asanccs et les
superordinateurs puissants comme ceu\ de la serie (RAY CYBFR. Bien qu'nn iidcisation ameliuurce Ldes tquatiotis
d'eouleiiient sil encore ticessaire. le principle oibstacle at 'cxolutiutn d'un tuntil detlude rentable est ciunstitue par Ces iCIs Lie
ealcul eleves lis aux equatioins difficiles de Navier Stokes. Enl diepit du fait que dies ordinateurs plus puissants avec de multiples
unites centrales apparaissent a]'hotrizoni. il est ticeesaire de di~eclupper des algorithmes encore plus rentaleis et de les
proigranmmer die manikre a utiliser entieretnent les caraceturistiques dui puissant materiel dies superordinateurs dispuiles. P'our
v parvenir. une cuinnaissanee intmme du materiel dies superuirdinlateurs et de son impact sur lalitoriihmc est inispensable Ct dc

sera Ie sujet du pre~sent AGARDograph.

Bien que Ic present AGARI~ograph soit prineipalement destine~ au spi~ialiste aetif diu caleul (Ie la do nam ique des fluides. it
cuinstituera un guide precieux at 'usage vies ehereheurs Piiur le ealcul dlans d'autres disciplines ainsi qu'ans directeurs
techniques. Le glossaire des temmes relatifs aux superuirdinateurs fitturant en annexe cst dFun intent particulier.

Les co-auteurs sont le Professeur D~r Wolfgaug Cientzsch. de l'niversivi Teehnique de Regensburg. Ct le D~r Ken Neves. des
Services dInformatique dc Boteing. h Seattle. Les deux auteurs puissident uine vaste expdrience en matiere de calculs trkis
pousxs.s d]ii fait qu'ils itnt uine etinnaissanee dLetaillee dies earaetdristiques du matdriel des superorvhinateurs aetuels cl de ceur
impact sur cxs algiirithmes. (Leurs hiographies figurent h la page suivante.)

Lc Groupe de Sp&ialistes de la Dynamnique des Fluides de l'AGARI) el le Recdacteut en Chef tiennent exprimer leurs
remerciements au Prufesseur Dr Gentzseh et au IDr Neves potur lcx efforts qu'ils lin vIeplovui, afin die riealiser en temps voulu cet
AGARDtigraph. Le D~r JISteger. du Centre de Recherche dc la NASA-Ames. a bien sot.!n edirer un Paragraphe di,
Chapitre 6.

II.Yoshihara
Redlactecur en Chef

iii

A-

BIOGRAPHY

Prof. Dr Wolfgang Gentzsch

Prfessor Gentzlch is presently Professor of Applied Mathematics at the Fachhochschu le-Regenisburg and is a cotisultant
on evaluating the suitability and potential of various supercomputer architectures for various applications. Prior to 1 985 he
worked at several research institutes, most notably the Max Planck Institute for Plasma Physics (Garchin!) and the German
Research Establishment for Aet onautics and Astronautics IDFVtR-Gdttingen). At DF\'LR Professor (,entzsch isas I lead of
the Computational Fluid Dvnamics Group (1981-1985) specializing in supercomputer softaxarc development and
restructuring CFH) algorithms for vector computers.

Professor (ientzsch received the lDiploma- in N Iathetnaics Pb,,si,- from the I o-hnical Uniersity -Aaceni its 19721 and
the D~octors D~egree in Numerical Mathematics from the ITechnical Uiniersits-larmstadt.

Dr Kenneth W.Neves

D~r Neses is currensix Manager of Research and Descloptettt p'rograms itt the Boeing (onputcr Scrsices (ornpan
(I3CS) in Seattle. Washington. His primary responsibilities include the definition and management of research and
development programs encompassing most aspects of engineering scientific computing. notably hardw~are. softakarc. and
algorithms. A major activity under Dr Neves' iIrection is the igh Speed Cotmputing Program Ahilt currestlN has 3 parallel
processors aind advanced A orkstation equipment.

Previously he was Manager oif the Computational Mathematics G rouip responsihle for maintenance. des elopnscnt. mnd
certification sf mathemnatical and statistical sisftaare libraries resident on the KCS comnputer centers natioisside. Before jinine
BCS in 1 971, Dr Neses "as Senior Mathentatician for the Nuclear l'oss r D is isii of Blabc ck attd Wilcox Coiil.
[vnchbure. Virginia.

Hec is currenitly' Vice-Chair and co-fouttder of the SIAMN Special Interest Group on Superconiputitig. t he ('tair and
fiounder of the Special Interest Communittee on Applications and Algorithms of the Cray I) sr (roup. and sers on t the 1I 17I
Subcomtmittee oin Supercomputing.

Dr Neses received the B.A. D~egree in Mathemnatits lwith great distinctionl from Caliliitia State ('nisersits at Satt Jose.
California. and received the M'.A. and Ph.). Degrees in Mathenmatics (specializing in tnumnerical analssis) fism A ruona State
University while holding a National Science Foundation Research Fellowship.

Is.

CONTENTS

Page

FOREWORD iii

BIOGRAPHY

CHAPTER I: INTRODUCTION
by H.Yoshihara

PREFACE TO CHAPTERS 2 AND 3
by K.W.Neves 9

CHAPTER 2: HARDWARE ARCHITECTI 'RE
by K.W.Neves 1I

2.1 BACKGROUND II
2.1.1 The Push for More Conventional Power 11
2.t.2 The Hardware Barrier 14
2.1.3 Parallelism in Computing 15
2.1.4 An Unusual Exam nle of Computer Architecture: The Hep 19
2.1.5 Advanced Concept, in Algorithm Piptlining 21

2.2 SUPERCOMPUTER ARCHITECTURE 23
2.2.1 Scope 23
2.2.2 Growth and Secondary Memory 23
2.2.3 An Overview of Supercomputers' CPUs 25

The Scalar and Vector Units 26
Primary and Secondary Memon 30
Interface (between Memon and the Vector I nits 31
Paths-to-Memory 33
Control or Instruction Processors 36
Secondary Storage 40

2.2.4 The Use of Multiple CPUs in Supercomputer Design 42
2.3 EMERGING TECHNOLOGIES 44

2.3.1 Background and Intent 44
2.3.2 Parallel Systems 44

Bus Based Systems
Hypercubes

2.3.3 Minisupercomputers: A Market Perspectise 46
2.3.4 Four Minisupercomputers: Architecture Description 49

2.4 SUMMARY 52
2.5 REFERENCES FOR CHAPTER 2 52

CHAPTER 3: ALGORITHM AND GENERAL SOFTV% ARE CONSIDERATIONS
by K.W.Neves 55

3.1 INTRODUCTION 55
3.2 IMPACT OF ARCHITECTURE ON COMPUTATION 56

3.2.1 Two-parameter Classification of Algorithms 56
3.2.2 Case Study: Sparse Matrix Computation 63

3.3 PRINCIPLES OF VECTORIZATION 70
3.4 SOFTWARE MIGRATION ISSUES 73

3.4.1 Transportability: Is it Feasible? 73
3.4.2 Computational Kernels as an Approach 74
3.4.3 The Role of Languages. Compilers, Preprocesor, 82
3.4.4 Throughput and I/O 86
3.4.5 Parallelism: Top Down vs Bottom Up 87

3.5 THE ART OF BENCHMARKING SUPERCOMPUTERS 91
3.5.1 Background 91
3.5.2 Impact of Hardware on Benchmarking 91
3.5.3 Interpretation of Kernel Benchmark 92
3.5.4 A Benchmarking Methodology 95

3.6 REFERENCES FOR CHAPTER 3 97

CHAPTER 4: VECTORIZATION OF FORTRAN PROGRAMS AT DO-LOOP LEVEL
by W.Gentzsch 99

4.1 IMPLEMENTATION OF SERIAL PROGRAMS ON VECTOR COMPUTERS 99

Page

4.2 VECTORIZATION EXAMPLES FOR CRAY COMPUTERS 16u
4.3 VECI'ORIZATION EXAMPLES FOR THE IBM 3090VF 103
4.4 SPECIAL VECTORIZATION HINTS 107
4.5 SOME REMARKS ON MULTITASKING 108
4.6 LITERATURE 108

CHAPTER 5: RESTRUCTURING OF BASIC LINEAR ALGEBRAIC ALGORITHMS
by W.Gentzsch 109

5.1 BASIC VECTOR OPERATIONS 109
5.2 MATRIX MULTIPLICATION FOR BANDED MATRICES 112
5.3 LINEAR AND NONLINEAR RECURRENCES 114
5.4 ITERATIVE ALGORITHMS 116
5.5 GROUP ITERATIVE METHODS 128
5.6 CYCLIC REDUCTION 129
5.7 SYSTEMS OF NONLINEAR EQUATIONS 131
5.8 RUNGE-KUTTA TIME-STEPPING METHODS FOR SYSTEMS OF ODEs 133
5.9 SOME REMARKS ON EXPLICIT SCHEMES 135
5.10 LITERATURE 136

CHAPTER 6: COMPUTATIONAL FLUID DYNAMICS AND SUPERCOMPU lERS
by W.Gentzsch 141

6.1 SUMMARY OF A WORKSHOP ON CFD AND VECTOR COMPUTERS 142
6.2 ADVANCES IN COMPUTATIONAL FLUID DYNAMICS (CFD) 146
6.3 VECTORIZATION OF A MESH-GENERATION CODE 150
6.4 THIN LAYER NAVIER STOKES SIMULATIONS ON VFCTOR COMPUTERS

by J.L.Sleger 154

6.4.1 Governing Equations 154
6.4.2 Implicit Finite Difference Algorithms 154
6.4.3 Vectorization and Multi-Tasking 155
6.4.4 Composite Mesh Schemes 157

6.5 VECTORIZATION OF MACCORMACKS METHODS 158
6.6 VECTORIZATION OF THE IMPLICIT BEAM AND W4ARMING SCHEME 160
6.7 A NOTE ON UNSTRUCTURED GRIDS 167
6.8 VECTORIZATION AND-MULTI TASKING OF A MULTI-GRID ALGORITHM 168
6.9 VECTORIZATION OF A GALERKIN METHOD 170
6.10 LITERATURE 175

GLOSSARY OF SUPERCOMPUTING TERMS A

... . + -Vll ,, I'mlll 11lkmkmlll

Chapter 1. BACKGROUND AND OVERVIEW (Editor)

1.1 INTRODUCTION

The arrival of the supercomputer together with the development of efficient
algorithms have made feasible computations of important fluid dynamic problems arising
in high performance aircraft. Two current problems that contain many of the
significant fluid dynamic mechanisms are as follows. The first concerns the transonic
maneuverability of advanced combat aircraft required by survival and weapons delivery
considerations. Such aircraft utilize leading edge vortices and vectored thrust to
generate high lifts with tolerable drags. (See Fig. I) Maneuver performance is
limited by the bursting of the vortices and severe shock-induced separation on the
wing that lead to vehicle dynamic instabilities. In relevent cases, the boundary
layer is essentially turbulent. The second problem concerns Lhe high altitude cruise
and reentry performance of hypersonic aircraft flying for example at a Mach number of
25 (Fig. 2). Here important features are strong shock waves that create large drags
and large boundary layer ene,-gy dissipation that leads to strong surface heating. The
air in the shock layer can further become sufficiently heated that the internal modes
of the air molecules become excited, and reactions as the dissociation of the air
molecules become significant. If a L.gnificant number of molecules has been
dissociated, the catalytic wall effect can greatly increase the surface heating by
enhancing the surface recombination and releasing the heat of recombination. Clearly,
these effects greatly modify the flow field as a whole. At high hypersonic Mach
numbers at high altitude conditions, the boundary layer over a significant portion of
the configuration is laminar, and transitional boundary layers will play an important
role.

For the proper treatment of these problems, the Reynolds-averaged Navier/Stokes
(N/S) equations, made fully determinate with a suitable turbulence model, must be
used. In the unsteady (perfect gas) formulation, the resulting equations with an
algebraic turbulence model are of mixed parabolic/hyperbolic type, with the
characteristics such that a marching solution procedure can be employed. If a steady
solution is desired, it would be obtained as the limiting flow for large times. In
the steady formulation, the N/S equations are also of mixed parabolic/hyperbolic type,
but the characteristic slopes are such as to preclude a marching when both subsonic
and supersonic flow regions are present. The above transonic problem must therefore
be posed in the unsteady form if a marching solution procedure is to be used. In the
hypersonic case, a marching of the steady equations would be prevented by the presence
of the thin subsonic sublayer in the boundary layer. If a sublayer approximation is
made where the pressure across the subsonic sublayer is assumed to be constant, the
upwind-biased characteristic is removed; and a spatial marching in the downwind
streamwise direction is then permitted. The steady equations with the sublayer
approximations are called the parabolized N/S (PN/S) equations, and they have yielded
solutions that have matched experiments in significant cases up to Mach numbers of 18.

The essential elements in numerically solving the above problems are the
generation of a suitable mesh and a stable and accurate difference algorithm. The
importance of the mesh generation cannot be over-emphasized, affecting both the
accuracy and stability of the numerical procedure. Above all, the mesh must be
adequately refined and orthogonal, particularly in the neighborhood of the
configuration surface. Additionally, to ease the fulfillment of the boundary
conditions, the mesh should be conformal to the configuration; and this is usually
accomplished by a curvilinear transformatior, which maps the boundaries in the physical
domain to the surface of a cube. The required mapping and the proper refinement and
orthogonality of the mesh are determined, either by an algebraic interpolation scheme,
or by solving an appropriately posed elliptic, hyperbolic, or parabolic differential
equation problem. For complex configurations, as an advanced fighter, the flow domain
is divided into a number of subdomains, each embedding a key component of the
configuration. With this multi-block structure, the mesh generation in each block is
greatly simplified, and the mesh can be efficiently tailored to the specific
component. Use of the multi-block mesh will require additional programming to insure
the proper continuity of the flow across the block boundaries.

1.2. NAVIER/STOKES METHODS

There are two classes of algorithms currently in use in solving the unsteady N/S
problem. These are the explicit methods, using for example a Kutta-Runge difference
scheme (Swanson and Turkel [1.1]), and the implicit methods as the approximate
factorization method (Steger-Pulliam [1.2]). Explicit methods are simple and suited
for the vector (pipeline) computers, but are hampered by stringent linear stability
limits on the marching step. Multigrid methods have been investigated to reduce the
large computing times with the oxlicit methods. but the extreme aspect ratio of the
boundary layer mesh have precluded the success experienced with the Euler equations.
Perhaps a multi-block mesh should be employed isolating the boundary layer and
confining the use of the multigrid to the "inviscid" mesh blocks in which the large
wave length (hard-to-damp) components of the truncation error occur.

In the implicit case, with centered second order spacial differencing, the problem
reduces to the inversion of a block septa-diagonal matrix, the six off-diagonal blocks
arising by the centered differences in the three spacial directions. The dimension of
each block is 5 x 5 corresponding to the five conservation equations. In the case of
the Steger-Pulliam ARC3D code (1.2], the Beam/Warming approximate factorization is
employed to reduce the block septa-diagonal matrix to a product of three block
tr-diagonal matrices, which can then be more readily inverted. The Beam/Warming
implicit difference scheme in three space dimensions is unstable, so that in the ARC3D
code an implicit second order and an explicit fourth order artificial damping were
employed. With the proper choice of the damping coefficients, the resulting
Beam/Warming scheme becomes linearly unconditionally stable. However, a limitation on
the marching step arises due to nonlinear instabilities, but the limitation here is in
most cases significantly less severe than the CFL conditions in the explicit schemes.

Subsequently, further improvements of the ARC3D code were made that greatly
reduced the computing time (Pulliam and Steger [1.3]). One significant improvement
was the (approximate) reduction of the block tri-diagonal Jacobian matrices to scalar
tri-diagonal matrices using the matrix eigenvectors. This reduction to scalar
matrices then permitted the use of the more effective fourth order implicit damping
instead of the second order damping, since the resulting scalar penta-diagonal
matrices could be inverted with modest additional computing.

Mention must be made of the MacCormack two-step (predictor/corrector) method

£I.4j, an earlier method still widely used. It utilizes the Lax/Wendroff two-step
explicit difference scheme in regions where the CFL stability restrictions are not
severe as in inviscid interior flow, but switc

t
es the second (corrector) step to an

implicit scheme where the marching step restrictions are severe as within the boundary
layer. The implicit step here requires the inversion of a block bidiagonal matrix.
Use of the MacCormack method has been restricted by the inflexibility to impose
boundary conditions of interest in the implicit step.

More recently, methods have been in development in an attempt to reduce the
computing time. Here the block septa-diagonal matrix was inverted directly using a
line Gauss/Seidel (relaxation) procedure (Thomas and Walters [I.5] and MacCormack
[1.6]). Here the performance of the line Gauss/Seidel procedure will depend on the
rate of convergence of the relaxation process which in turn will depend on the
dominance of the diagonal blocks. Experience to date for large problems ha: not shown
improvements of the computing times with the Gauss/Seidel relaxation method.

There have been refinements in the difference schemes (upwind schemes) where the
nu.,,K ;ca7 ,I 1.tj wa. autoatjcal1.y t or'ea to mp. ove tile .uck capture. These
include the use of flux limiters in the elgenvalue split-flux methods and the total
variation diminishing (TVD) methods. These techniques have been successful in
removing shock "wiggles", particularly for strong shocks, but have been unable to
reduce the capture thickness of highly swept shocks. More importantly, a proper
upwind differencing precludes the need of additional artificial viscosity, though of
course the greater flexibility with the latter is lost assuming the proper assignment
of the "coefficient of viscosity" can be made. Recent unsteady N/S methods of Thomas
and Walters (1.5] and Ying, Steger, Schiff, and Baganoff [1.7] have employed :uch
upwind difference schemen. Computing time was however increased significantly.

1.3. EXAMPLES

The present status of N/S calculations for the transonic and hypersonic problems
is next illustrated by several examples.

1.3.1 Transonic Case

In the transonic case, the first examples include the turbulent flow calculations
of two swept wings by Kaynak, lolst, and Cantwell [1.8) using the transonic N/S (TN/S)
code; that is, the improved ARC30 code with a multi-block mesh. The first case is for
the 20

0
-sweep wing with a NACA 0012 airfoil section for a Mach number of 0.826, *n

angle of attack of 20, and a Reynolds number based on the wing chord of 8 x 10
n
.

In Fig. 3 the calculated chordwise pressure distributions at three span stations are
compared with experimental results. Two turbulence models were used: the
Baldwin/Lomax mixing length model and its lag extension. The inadequate
shock/boundary layer interaction is evident here and has resulted in an insufficient
weakening of the terminating shock. This then leads to an erroneous shock location
and to errors in the forces and moments on the wing. The airfoil results of Johnson
(Ref. 9) suggest the cause to be an inadequacy of the algebraic turbulence model which
lacks the proper lagging of the turbulent coefficient through the shock
pressure-rise. With the proper lag, a larger displacement wedge at the base of the
shock would result, producing the greater weakening of the shock to match the
experiments.

The second case (also from (1.8]) is for a 45
0
-sweep, tapered and twisted wing

at a Mach number of 0.9, an angle of attack of 50, and a Reynolds number based on
the mean aerodynamic chord of 6.8 x 106 In Fig. 4 the chordwisc ,.essure
distributions are compared to the experimental results, and good agreement is achieved
except in the two outboard stations. At the 701 semi-span station, both the forward
and the rear shocks are inadequately captured, whereas at the 90% station, the

outboard shock is badly captured. The inability to capture the swept forward shock is
a frequent failing due to the failure to refine the mesh, not only in the streamwise
direction, but in the transverse directions also cutting across the shock. The
improved capture of the stronger rear or outboard shock must await an improved
modeling of the turbulent transport. In Fig. 5 we show the skin friction lines that
were predicted, comparing them with a schematic of an oil-flow picture from the wind
tunnel tests. Calculations have very Impressively predicted the envelope of the skin
friction lines forming the separation line. The location of the separation line was
not predicted correctly due to the inadequate shock/boundary layer interaction
described above. An open separation was predicted without the spiral vortices seen in
the oil-flow picture, suggesting the need for an improved viscous modeling in the
lower part of the boundary layer where a large cross-flow occurs. The consequences on
the pressure and skin friction distributions due to the absence of the spiral vortices
however may not be significant.

The second example illustrates recent accomplishments in the mesh generation for a
complex configuration, in this case the General Dynamics F-16. In Fig. 6 is shown
the multi-block mesh from [.10] generated however in connection with an Euler
calculation. Shown here in particular are the surface mesh and the block structure
for the under-fuselage inlet. For a Navier/Stokes calculations, the mesh must be
additionally refined near the configuration surface to resolve the boundary layer
flow. The generation of a good mesh constitutes a major part of the problem solution,
and the above results are significant accomplishments.

1.3.2 Hypersonic Case

Hypersonic calculations are less advanced than for the transonic case. In a
recent example (1.11] the generic wing/fuselage shown in Fig. 7 was calculated using
the NASA-Ames/Boeing parabolized N/S (PN/S) code which employed the Beam/Warming
approximate factorization and the Baldwin/Lomax turbulence model. The Mach number was
25, the angle of attack 00, the altitude 217,000 feet, and the surface temperature
17580 R. The air composition was assumed to be in equilibrium; that is, the
reaction rates were assumed to be sufficiently rapid that the specie number densities
assumed their equilibrium values corresponding to the local temperature and density.
In Fig. 8 we show typical spanwise distributions of the pressure and heat transfer at
various streamwise stations. At a given axial station, the peaking of the heat
transfer is seen to be tied to the peaking of the pressure which occurs at the
reattachment point. The heat transfer mechanism here is analogous to that at a
stagnation point. The variation of the peak pressure, and hence that of the peak heat
transfer, along the leading edge is due in large part to the variatlor of the total
pressure loss through the changing nose and detached wing shocks encountered by a
given attachment streamline. Proper capture of these shocks is therefore essential.

'Lh the sublayer approximation, a streamwise (spatial) marching of the two
dimensional (2D) cross-flow was possible with the PN/S method. This Is to be
contrasted to the ARC3D method which envolves a time-marching of a 3D flow. With the
PN/S method, the mesh generation is therefore considerably simplified, and the
computer time and memory requirements are significantly decreased, relative to the
unsteady ARC3D method. Despite this, the above PN/S calculations required
approximately 15 hours of Cray XMP computer time, clearly excessive for design
purposes.

The above hypersonic solution wus over-simplified from two essential aspects, The
first is the assumption that the flow was locally in chemical equilibrium (infinitely
fast reaction rates). This assumption is in serious error through shock waves, where
the molecular vibrational energy modes and the chemical reactions are essentially
frozen (zero reaction rates). Furthermore, atomic reconbinations require relatively
infrequent three-body collisions and are thus far from equilibrium over most of the
significant part of the flow. Finite rate chemistry must therefore be incorporated
into the above problem, and this requires the addition of specie continuity equations
to the N/S equations. This addition will not alter the existing mixed
parabolic/hyperbolic character of the equations (adding only additional degrees of
parabolicity), so that a marching procedure is still permitted. When fast reactions
are present however, the stiffness of the already-stiff equations is greatly
Increased, requiring modification of the marching procedure.

The second shortcoming in the above hypersonic solution was the assumption of
turbulent flow. For the high altitude and hypevelocity conditions, the forward
portion of the configuration will be immersed in laminar flow, followed by an equal
stretch of transitional flow before the boundary layer becomes turbulent. This change
of the boundary layer character will greatly affect th heat transfer and skin
friction. Of special concern Is the overshoot region occurring between the
transitional and turbulent regions where the heat transfer and the skin friction can
assume values significantly larger than the turbulent values. To model this
transitional transport properly, a suitable prior-history differential equation model
for the turbulence must be employed.

1.4. SUPERCOMPUTERS (For background, see Gentzsch (1.12)

Clearly the accomplishments to date in computational fluid dynamics would not have
been possible without the workhorse vector computers as the Cray XMP and ETA 205
series computers. Such computers have achieved phenomenal power through the efficient

" tilization of parallel and pipeline arithmetic hardwar(§ruc'al here was the timely

transfer of data between the arithmetic units and memo-, wIth the data being
transmitted, not singly, but in suitable packages vectcrs l us''g paialle! paths. The
essence is to achieve a smooth flow of data thlouvh *0C system from the raw input
stage to the finished output without congestion at avolas)e bottlenecks. It s clear
that the possible smoothening of the data flow depends hea' !y on the vector features
of the hardware and the compatibility of the algorithm any ts "work-breakdown"
structure with these features. With the latter aspects so pronlem dependent, the
optimal design of the vectorization cannot be relegated to the (omp iler or to the
operating software alone. The programmer must assume a signifliant portion of this
task himself, and it is essential that he be intimately familar with the computer
hardware to accomplish this task successfully. It is further clear, as most code
users have experienced, that the vectorizati - tailored to one superomputer does not
automatically carry over to other computers, raising the portability issue.

1.5. SUMMARY AND CONCLUDING REMARKS

The above transonic and hypersonic examples show the high-promise of the N/S
methods. However to yield viable solutions for design purposes, improvements in the
methods ire required to eliminate the fluid dynamic shortcomings described above. In
the transonic case, a turbulence model, more appropriate than the algebraic
Baldwin/Lomax model, will be required to treat the shock/boundary layer interaction
correctly. One or two differential equation model will be required for this purpose;
and with the shock pressure-rise oeing mesh dependent, such prior-history turbulence
modeling must be scaled to the mesh. Additionally, to capture properly the swept
forward shock and slip surfaces as the leading edge separation vortices arising on
sharp-nosed swept wirgs, an adaptive mesh will be needed. In the hypersonic case,
finite rate specie continuity equations and one or two equation, prior history,
turbulence modeling for the transitional flow must be added to the existing N/S
equations. The addition of these needed improvements will severely tax the already
unaffordable computer cost and memory requirements. It is thus more than ever
mandatory that computer programs be so constructed to be fully sympathetic to the
nardware of current vector computers. Moreover, it is not too early to address the
matter of portability of such codes, not only between different supercomputers, but
between supercomputers and, for example, the more recent mini-supercomputers. It is
the purpose of the present AGARDOGRAPH to address these issues in the following
chapters:

General Considerations (Dr. Ken Neves)

Chapter 2: Hardware Architectures

Chapter 3: Algorithms and General Software Considerations

Specialization to CFD (Prof. Dr. Wolfgang Gentzsch)

Chapter 4: Vectorization of Fortran Programs at the Do-Loop Leve.

Chapter 5: Restructuring of Basic Linear Algebraic Algorithms

Chapter 6: Computational Fluid Dynamics and Supercomputers

A Glossary of supercomputing terms is contained in the Appendix following Chapter 6.

1.6. REFERENCES

I.I. Swanson, R. , and Turkel , E., "A Multistage Time-Stepping Scheme for the
Navier/Stokes Equations", NASA Contractor Report 172527, 1985.
1.2. Pulliam, T., and Steger, J. , Implicit Finite Difference Simulations of Three
Dimensional Compressible Flow, AIAA Journal , Vol. 18, No. 2, 1g8O.
1.3. Pulliam, T. , and Steger, J. , Recent Improvemcnts in Efficiency, Accuracy, and
Convergence for Implicit Approximate Facto _adtion Algorithms, AIAA Paper No. 85-0360.
1.4. MacCormack, R. , A Numerical Method of Solving the Equations of Compressible
Viscous Flow, AIAA Paper No. 81-0110.
1.5. Thomas, J., and Walters, R., Upwind Relaxation Algorithms for the Navier/Stokes
Equations, AIAA Paper No. 85-1501.
1.6. MacCormack, R. , Current Status of Numerical Solutions of the Navier/Stokes
Equations, AIAA Paper No. 85-0032.
1.7. Ying, S., Steger, J. , Schiff, L. , and Baganoff, 0., Numerical Simulation of
Unsteady Viscous High Angle of Attack Flows Using a Partially Flux-Split Algorithm,
AIAA Paper No. 86-2179.
1.8. Kaynak, U., Holst, T., and Cantwell, B., Computation of Transonic Separated Wing
Flows Using an Euler/Navier-Stokes Zonal Approach, NASA TM No. 88311, 1986.
1.9. Johnson, 0., "Predictions of Transonic Separated Flow with an
Eddy-Viscosity/Reynolds-Shear-Stress Closure Model", AIAA J., Dec. 1986.
1.10. Karman, S., Steinbrenner, J. , and Kisielewski , K. , Analysis of the F-16 Flow
Field by a Block Grid Euler Approach, Presented at the AGARD meeting on "Applications
of Computational Fluid Dynamics in Aeronautics, Aix en Provence, April 1986.
I.11. Blom, G. , Wai, J., and Yoshihara, H., Hypersonic PN/S Calculations over a
Generic Wing/Fuselage, Boeing Report BMAC Aero TN 1L1A, 1986. (Also presented at the
1986 SAE Aerospace Technology Conference, Long Beach, CA, 1986.)
1.12. Gentzsch, W. , "Vectorization of Computer Programs with Application to
Computational Fluid Dynamics", Notes on Numerical Fluid Mechanics, Vol 8, Vieweg,
1984.

.. .. -,, n,, -. . l L _ k= , m o~o ..-

\

VISCOUS VORTICAL FLOWS

PROBLEM 1:

~PROPULSIVE LIFT

LEADING EDGE _ VECTORED THRUST

SEPARATION VORTICES

PERFORMAN-E LIMITERS

* VORTEX BURSTING
* SHOCK-INDUCED SEPARATIONS

Figure 1. Transor4z Maneuverability of Combat Aircraft.

PROBLEM 2:

FORMULATION PROBLEMS

* B.L. TRANSITIONAL FLOW

* TURBULENCE MODELING

WAk'. PROPERTIES

(ROUGHNESS, CATALYSIS)

•LARGE SURFACE HEATING

AEROSPACEPLANE

Figure 2. Hypersonic Cruise and Reentry Performance.

6

"¢p

I oA

A V EX (LOCKMAN ANO SEEGUILLER
-4

- - -
TNS EQUILIBRIUM TUR MODEL

-61c TNS. REL.AAION TURD MODEL

FIGURE 3 Comparison of Pressure Distributions - 2D-Sweep Untapere Wing.

++EXPERIMENTS.2 for 6 .lo
0
- 2 e 1ig x

I -- TN/S CA LCULAT IONS

Figure 4, Test/Theory Comparison of the Pressure Distributions

for a 45°-Sweep Wing.

d m...L L,- . -

CALCULATED

Fiur 5 oprsnoSh knFito ie 4
0
SepWn)

FB

SC

DEFL FFOCUNLT-UELG

Figue 5 ompFigure 6. theSn Fritio Line (Re. 0Swe Wig)

, - 1200

000

00

AXIAL STATIONS INCHES

Figure 7. Generic Hypersonic Wing/Fuselage Configuration.

Every 24- '

Every 1- 45

Every Zy

945

075,

O 400 6030 amO ECK 1200

00 0 OSE SHOCK 'INTERSECTION" POINT

Figure 8. Spanwise Variation of Pressure and Heat Transfer

(Generic Configuration).

-

PR/rACE TO CRUPERS 2 AND 3 (Dr. K. V. Neves)

The purpose of this treatise is to explore the technology employed in today's
supercomputer designs. The author has assumed the reader is not generally aware of this
technology. To help in the reading of this document, a glossary has been provided for
terminology peculiar to supercomputing. At times more common computer jargon is used,
but for the most part, it is explained when used. The technology discussed is a mixture
of hardware technology, computer design, and algorithm methodology. The concepts
presented are often summarized in sections entitled "important concepts." The focus of
these summary remarks is to attempt to isolate more lasting principles from the
particular machine designs. Thus, it is hoped that the rapidly changing ch'racteristics
of commercially available computers have been separated from longer lasting trends. As
a result, in-depth comparisons of machines were avoided. Upon reading this work one
should not expect to discover which of the 5 supercomputers, 4 minisupercomputers, and
assorted parallel computers discussed, is superior. By the same token, to illustrate
particular technical points, machine comparisons are frequently used that do involve the
various machines. Weaknesses, bottlenecks, and strong points of each machine have been
uncovered through a series of discussions which lead to some exposure of the dependence
of algorithm design on computer architecture.

This treatise is particularly timely in the author's estimation due to the fact that the
computer industry is rapidly approaching another milestone in high-end computer
hardware. Roughly 15 years ago, the fastest computers made (notably CDC followed by
Cray Research) used a new design method -- vector pipelined architecture. It is now
almost universally accepted that advanced hardware today uses this approach to achieve
superior price performance. The milestone we are now beginning to observe in this class
of computers (i.e. supercomputers and minisupercomputers) is that of the combined use of
pipelining and CPU-parallelism. Neither pipelining nor parallelism is new. But their
use in computers aimed at the general purpose scientific market has caused a tremendous
challenge to software professionals responsible for the computations that fuel
technology and research in science and engineering. For these reasons this treatise has
attempted to accomplish two things: 1) explore today's approaches to vector computing by
relating hardware architecture to software/algorithm design, and 2) give some insight
into potential trends in parallel computing that are likely to be commonly used in
supercomputer design over the next five or so years.

Chapter 2 is largely devoted to hardware considerations. The design of three Japanese
and three American companies are reviewed and contrasted -- but always with an eye
toward computational strategy (i.e. algorithm and software ramifications.) Chapter 3 is
devoted to software issues such as algorithm design, transportability, software
migration, and benchmarking methodology. One principle is frequently supported
throughout this treatise, while it is never stated. It is simply that there is no
elementary formula for optimal usage of today's supercomputers. Software performance
can only be optimized by those who have a curious mixture of understanding of both the
hardware architecture and the application and its underlying algorithms. The automation
of program optimization is not necessarily an impossible task, yet it does not seem to
be able to accommodate the rapidly changing issues in this ever expanding technology.

ACKNOWLEDGMENTS: Chapters 2 and 3 are the result of a broad collaboration spanning many
years. It reflects the insight and knowledge the author has gained with a long
association of computer professionals at the Engineering Technology Applications
Division (ETAD) of Boeing Computer Services. Among the many individuals in this
category several have had continual impact with insightful comments and discussion over
the years. while the list could be very long, the author would like to especially
acknowledge the following: B. Dembart, M. Epton, A. Erisman, R. Grimes, J. Lewis, and
H. Simon. In addition, this material benefited from the author's work responsibilities
in directing the High Speed Computing project. It was under the auspices of this
project that a great deal of information was gained during a project trip to Japan in
1986 with B. Wilson and J. Kowalik, also with Boeing Computer Services. The author
would also like to express appreciation to J. Kowalik for his thoughtful reading of
of Chapters 2 and 3.

IAM

CHAPTER 2: HARWARE ARCHITECTURE (Dr. K. W. Neves)

2.1 BACKGROUND

In this chapter, an overview of computer architectures is given. The purpose, however,
is not to offer a text book description of the electronics behind computing, but rather
an appreciation of the barriers in computer development that have led to the comr'r'.
design of today's supercomputers. This introductory section will examine 1) the need for
increased computer power as result of the pressure from new computational processes; 2)
the limits and barriers of hardware; 3) a brief history of parallelism; and 4) an
overview of parallelism in today's computers. Following this Background section, an In-
depth look at today's supercomputer architectures and emerging computer products is
given. In chapter 3, the impact of new hardware architecture on algorithms will be
examined.

Like computational fluid dynamics, supercomputing has developed a set of terms,
definitions and ad hoc descriptions of common processes. In this monograph, most of
these terms will be defined when used. Nevertheless, in an attempt to aid the reader an
informal glossary of supercomputing terms is included in an appendix.

2.1.1 The Push for More Computational Power

To appreciate the need for innovation in computer hardware architecture, it is
appropriate to appreciate the need for more computer power. Modern engineers,
scientists, and researchers are spending an ever greater percentage of their efforts on
computers. Ken Wilson, Nobel Laureate in Physics, ascribes the birth of a new branch of
physics to the increased capacity of today's powerful computers (2-1]. No longer is the
experimental physicist confined to the laboratory, and no longer is the theoretical
physicist tied solely to his creativity. Experimental computation, the melding of
experiment and theory, has been made possible through the dynamic growth in computer
power. Electronic computation has become an indispensable tool for all of science. For
example, a decade ago the fundamental tool to verify and/or repair a wing design, was
the wind tunnel. Clearly, this is an indispensable tool. Even in an ideal wind tunnel
experiment, at best, one cannot even accurately measure the total drag. To
differentiate the components of measured drag is difficult, if not impossible.
Computationally, one can separate the effects, analyze them and experimentally find
potential solutions by isolating physical parameters which in live experiments are
inaccessible. It is also possible to "experiment" computationally in areas where
physical experiments cannot be done, e.g. in other atmospheres or ultra high
temperatures. Thus, simply as a tool of science, computers are being used more and
trusted for functions that formerly were the domain of real experiments or pure theory.

Increased usage of computer tools can account for "-ore" computers, but not necessarily
account for the seemingly unending need for more powerful computers. How can today's
already complex computations require more and more computer power? The answer can only
be revealed by examining trends in both the use and design of computers themselves.
There are basically four pressures for more computational capacity in computing
hardware:

1) More refined analysis,

2) more demanding models,

3) new user interface requirements, and

4) design and optimization of complex processes.

The first pressure for more computational capacity comes from the requirements of more
detail and accuracy in established models. With no changes in the model or computer
implementation of the algorithms, more computer power can still be required to perform
the desired studies of processes like computational fluid dynamics. Most physical
models are discretized into 2 or more dimensions. This is quite often done by grid-
point representation of what was originally two or three dimensional curves or surfaces.
The grid spacing often is directly related to the fidelity of the model to the "real
world". Thus, finer grid spacing results in a more accurate and more meaningful result.
In two dimensions, simply refining the grid by halving the grid spacing leads to a 4-
fold increase in data and computation. Moving the analysis into four dimensions (three
space and one time dimensions) can call for another 16-fold increase in required
computational power in order to double accuracy. Table 2-1 below (taken from reference
[2-2]) illustrates the increase in complexity for several methods in 2 and 3 dimensions.

... A -. d L _ m .-

12

COMPLEXITY IN FLO 57

ALGORITHM FLOPS/CELL NO. OF NO. OF TOTAL
/CYCLE CELLS CYCLES OPS.

X 10**9

POTENTIAL (3-D) 500 10,000 100 - 200 5 - 10
EULER (2-D) 400 5,000 500 -1000 1 - 2
EULER (3-D) 950 100,000 200 - 500 20 - 50

(Note: cycles refer to algorithm iterations to attain steady
state accuracy for each cell)

TABLE 2-1

Many of today's production and research programs in computational fluid dynamics are
limited by the computational bottlenecks of computational speed and memory capacity,
even on today's fastest supercomputer systems.

The table above also illustrates the second pressure for more computational power, that
of more refined analysis. This was discussed at some length in the introductory chapter
relative to CFD. Depending on the physical model being modeled more refined
computational models are required. One often finds compromises in models or the objects
being modeled to compensate for the lack of computational power. The following diagram
(also from reference (2-2)) illustrates the compromise process.

METHODS GEOMETRY
(COMMONLY FEASIBLE)

C G C
0 LINEAR INVISCID FULL AIR FRAME E 0 /\

M M NON-LINEAR INVISCID 0 M
0I 0 P TRANSONIC POTENTIAL 3-D WING M P

V D L EULER E L
E E REYNOLDS-AVERAGED N/S 2-D AIRFOIL T E
L X LARGE EDDY SIMULATION R X

I I I
T C T
Y Y

Figure 2-1
Complexity and Compromise

Of course, the situation is even more complicated. As discussed in the introduction,
the model itself can become more complex depending on the phenomenon being studied. For
example, angle of attack, mach number, viscosity, vortices and the like all impact the
model, the mathematical equations, the algorithms, and hence, the efficacy of the
computer design.

Strangely enough, another factor in demand for computational power comes from the
complexity of the process itself. The ability to compute more refined meshes on more
refined models has developed more sophisticated interaction between the scientist and
the computer itself. An example, of this is apparent in commercial airplane design.
One of the important factors in airplane design is the interaction between wing design,
pylon interference, and lift. In order to observe anomalous behavior it has been common
to compute and "observe" pressure gradients on the wing. It is interesting to trace
this "observation" process. Not too many years ago the pressure was analyzed at various
wing cross sections. Today, it is not uncommon to see color coded pressure gradient
profiles along the entire wing. The trend is, however, toward observing the (particle
injected) flow over the wing in real time interaction with varying angle of attack. The
more the modeler can "see" in this type of process, the greater the demand for model
refinement and computational power for near real time display. Processes that were one
or more CPU hours a few years ago, are now required to be performed in milliseconds in
order to achieve this type of interaction.

Finally, the most overwhelming need for increased computer capability comes from the
trend toward optimal design. Many of today's most complex processes are direct analysis
of physical behavior. The results are fed back to the engineer or scientist, who in
turn defines a new set of inputs or model changes to analyze further. The trend toward
taking the man "out-of-the-loop" is very evident today. To illustrate this point,
consider a simple two-dimensional airfoil. One can parameterize this curve and perform
an analysis of pressure as a function of flow over the airfoil. Figure 2-2 displays
the pressure profile plotted against the chord-wise station. The dotted lines

r - 'w--..

13

correspond to the dotted airfoil displayed in Figure 2-3. These results are the output
of an analysis program that simply analyzes pressure given the airfoil as input.

-0.8 MACH NO. -.86 Y 0.

-0.4 .
UPPER & LOWER

CP 0 0.2 0.4 0.6 0.j SURFACES

0.4 XIC

0.8 BEFORE OPTIMIZATION
-AFTER OPTIMIZATION

Fig. 2.2
Pressure Over Wing: Two Cases

If you consider several parameters defining the curve as the domain of a function space,
and parameterize the output of the computational process to form a range space, a design
process can be defined. An objective function can be defined to, say, maximize the area
under the pressure curve. Using standard optimization techniques with the analysis
program as the "function box" a simple optimization problem is aefined and can be
solved. The result is displayed in Figure 2.2 with the solid lines, now as input to a
design process. The result is an improved airfoil, depicted by the solid shape in
Figure 2.3. This not only has been done in this simple case, but is being investigated
by researchers in much more complex situations and in other industries on completely
different types of problems. The point to be remembered is that "today's analysis
programs are tomorrow's inner-loops." A word of caution is worthwhile. The process of
creating design methods from analysis tools is not trivial. Quite often the objectives
are not easily defined and may reside in the "gut feel" of experts. In addition, first
attempts often lead to unrealistic results, and require pains taking refinements.
Nevertheless, this trend is continuing to show promise in many disciplines.

BEFORE OPTIMIZATION
AFTER OPTIMIZATION

Fig. 2.3

Optimal Airfoil

while this has not been an attempt to give a comprehensive survey of the technological
demand for more computer power, it is hoped that the need for such power is apparent.
In fact, the advent of new approaches to the use of computers in fields such as
artificial intelligence, vision, chemistry and robotics suggest the only potential
abatement in the quest for increased computer power would be a sudden end to human
imagination and invention!

.. .. . , I dk , AL- _ _- - !

(4

2.1.2 The Hardware Barrier

In the course of technological history, eiectrri: computation is a very recent event.
In its short evolution, the basic design of computers changed very little. Advancement
in computer power came largely from improvements in electronic circuitry. The big
Dreakthroughs wer. electronic tubes, transistoLsIuils, etc. Each new ii,cntion seemed
to circumvent a previous hardware problem. As the speed of computer circuits has
increased, however, some real "hard" limits are becoming evident. These hardware
realities are being addressed by the computer architect. The architect is caught in the
middle of hidware realities and the demand for increased computational power described
in the previous section.

The biggest "hard limit" faced is the speed of light. A modern supercomputer has cycle
times on the order of nanoseconds (currently, from 4 to 20 nanoseconds depending on the
company.) The industry is pushing steadily toward the goal of 1 nanosecond. In one
nanosecond, an electron travels about a five centimeters. The result is that even with
infinitely fast gate and switching speeds, chip interconnection delays wili prevent
computer cycle times from going to zero. In today's computer designs roughly 60% of the
cycle time is due to switching speeds, 25% chip interconnections, and 15% design
compromise. With this reality the computer architect has been increasingly willing to
dabble with parallelism, pipelining, overlapped processes and the like (to be desc-ibed
later.)

A complete description of the history of electronics and chip technology is not only
beyond the scope of this treatise, but beyond the expertise of the authors. However, it
is impcr.-!:.t to understand the difference in the "building malrials" f-m which
computer architects may select. An understanding of the trade-offs and compromises that
various architects must make, can lead to a better understanding of the resulting
hardware, and surprisingly, a better understanding of appropriate software design.

Materials and components found in modern supercomputers, of course, vary. The variation
is not only in material used but in the degree of integration (circuits on a single
chip) and methods for packaging and cooling. In fact, most supercomputers use ECL
(bipolar emitter coulled logic) chips for logic. Even IBM has used ECL in the 3090, a
departure from their tradition. (The notable exception is the ETA Systems GF-10, whic.,
uses complementary metal oxide semiconductor, CMOS, technology.) MOS (metal oxide
semiconductor) integrated circuits (ICs) are being more frequently substituted for ECL,
particularly in memory. The use of MOS as opposed to ECL is a very good example of the
type of compromises faced by the architect. MOS, for example, has lower power
requirements, hence less heat to dissipate; however, MOS circuits are slower and add to
the "wait" time when used in memory. Thus, the choices begin to become evident --
larger, but slower memory versus smaller, yet faster, memory. The choices are not quite
that simple. For example, while MOS may mean slower fetch time for a single piece of
data, large amounts of data can be streamed (or pipelined) in such a manner as to still
offer high bandwidth data retrieval. we shall discuss the impact of these types of
decisions on software in a later chapter. CMOS (complementary metal oxide
semiconductor) circuits are being considered by manufacturers. As mentioned the ETA GF-
10 is using these chips. Their advantage comes from very low power requirements leading
to high density packaging which reduces the interconnection distances through very
large-scale integration. Their slower speeds are the problem. ETA has chosen to cool
them to 100 degrees Kelvin to improve speed.

At first blush, one might conclude that supercomputers are not all that different.
After all, they mostly use ECL for logic and KOS for memory. However, due to packaging
and degree of integration the resulting hardware is very different. This becomes most
apparent when looking at heating/cooling characteristics. The table below illustrates
this fact.

Cooling Technology

COMPUTER COOLING TECHNOLOGY

FUJITSU VP-200 (AMDAHL) AIR COOLED

HITACHI S-810/20 AIR/MEMORY & WATER/LOGIC

CRAY X-MP FREON

CRAY-2 LIQUID IMMERSION

NEC SX-2 WATER

ETA GF-10 LQD. NITROGEN IMMERSION/LOGIC

CHILLED AIR/MEMORY

IBM 3090/VF WATER

TABLE 2-2

The future holds promise for alternate materials. Cray Research has already announced
that its CRAY-3 will be based on galium arsenide. Current projections by industry
analysts, however, are that successful galium arsenide chips are likely to produce cycle
times on the order of 1-2 nanoseconds, and that more exotic technology such as HEMT
(high electron mobility transistors) are required to achieve significant improvement in
cycle times. Today almost half the cycle time is due to packaging. New materials
promise improvement in gate delays (picoseconds vs. nanoseconds in logic ICs), less heat
dissipation, and faster saturated electron speed over Silicon. However it is necessary
to employ larger scale integration to achieve significant improvements. VLSI (very
large-scale integration) is characterized by 1000's of transistors/IC. CRAY-3 will have
11,000 transistors per IC. The predictions are for millions of transistors per IC by
1990 (VHSIC, very high-scale IC). with this kind of integration the neeo for larger
numbers of chip interconnections is reduced, thereby "side- repping' the speed of Igt
issue. The complexity of the circuits however, present there own dilemma. How can all
these logic circuits be effectively used? Once again, the answer will have its impact
on software and applications.

Most architects seem to be mindful to some degree of the impact of their decisions on
the user. Nevertheless, the successful architect seems to be a wily mixture of
engineer, scientist and magician. Unfortunately, the genius of a good architect is just
the beginning of a usable machine. The ever increasing complexity of the computer parts
(chips) leads to ever increasing difficulty in using the full potential of the hardware.
In the next subsection a very brief discussion of the use of parallelism in computer
architecture is provided. Parallelism is not a new concept. As the complexity of the
-np ;!r and its underlying building materials has grown, it is natural Lo turn to
concurrency in software, systems, and hardware to maximize yield for a given level of
hardware technology.

2.1.3 Parallelism in Computing

Long detailed taxonomies of computing architectures are not only boring, they often add
little to the understanding of the software implications of various architectural
approaches. For example, a long discourse as to "what is a supercomputer" or whether
the machine is parallel, vector or single/multiple instruction streamed etc.,
contributes little to the fundamental issue of usage methodology or prediction of
performance. By the same token, these same characteristics figure greatly in software
design for these unusual systems. As computer architects use more (and often recurring)
tricks to push performance beyond what component technology alone can offer, a greater
obligation is placed on the users to accommodate these changes. The basic tool the
architect uses to achieve "super" performance is parallelism. This parallelism comes in
many forms. In this section we will review general forms of parallelism used in high
performance computing without attempting to classify vendor specific products.

In Section 2.2 we will examine architectural features of supercomputers in greater
detail, particularly those features that greatly impact computation. In Section 2.3 a
brief overview of minisupercomputers (to be defined) will be given, along with
commercial examples of purely parallel systems.

Historical Perspective: The term parallelism is so often used that it almost has taken
on specialized meanings in various circles. A pipular concept concerning parallel
computers is that they are the class of machines that have many copies of a system (CPU)
working simultaneously. This, indeed, is a form of parallelism. Yet, from a broader
perspective, parallelism is a term that may be more precisely replaced by "concurrency",
the simultaneous operation of one or more hardware functions. In this sense,
parallelism has been with us from the very early days of computing. For example, the
overlap of computation and I/O is a form of parallelism. In modern supercomputers, the
parallelism has invaded the very heart of computation -- the floating point operation
itself. This latter phenomenon will be discussed t some length, but first, a
historical perspective of the use of parallelism at the system level is in order.

A thorough, yet concise, history of parallelism is given in Hockney & Jesshope [2-4].
They indicate that parallelism has been used and considered by computer designers from
the earliest days as indicated from the following excerpt:

The earliest reference to parallelism in computer design is thought
to be in Gereal L. F. Menabrea's publication in . . . October 1842,
entitled Sketch of the Analytical Engine Invented by Charles
Babbage. . . In listing the utility of the analytic engine, he
writes: ". . . Likewise, when a long series. of identical
computations is to be performed, . . . the machine can be brought
into play so as to give several results at the same time, which will
greatly abridge the whole amount of the processes."

The following table of historical usage of parallelism in computer design was assembled
from several sources, most notably [2-4] and [2-5]. Where computers are named, they are
merely examples of commercial products that have used the feature, not an indication
that the company listed necessarily was the first to use the particular form of
parallelism. It is evident that the occurrence of concurrent operation of I/O, memory

fdetch/store, functional units, and/or instructions has been a mainstay of computerdesign from the inception of the industry.

Examples of Parallelism in Computing

USE COMPUTER DATE

Bit parallel computation IBM 701 1953

I/O peripherals
(simultaneous I/O) IBM 709 1958

Simultaneous use of the ATLAS 1961
address unit and the
arithmetic unit, and
pipelined operations

Overlapped, look-ahead

instruction decoding STRETCH 1961

Parallel CPUs SOLOMON (ILLIAC) 1974

Functional parallelism,
banked memory CDC 6600 1964

Functional parallelism of
pipelined units CDC 7600 1969

Associative memory GOODYR. STARAN 1972

Vector instructions CDC STAR 100 197?
TI ASC 1973

Multiple vector pipes TI ASC 1973

Array processors FPS AP-120 1976

Vector registers CRAY-i 1976

Pipelined instructions
(MIMD implementation) DENELCOR HEP 1982

Multiple vector CPUs CRAY X-MP 1982

TABLE 2-3

Forms of Parallelism: The topic of parallelism in computers could easily require a
monograph of its own. This discussion will be confined to aspects of parallelism in
modern computers that have a direct impact on scientific software design. To offer an
example, consider multiple central processing units (CPUs). Several computer
manufacturers offer systems with multiple CPUs. Notably, IBM and their compatible
competitors have had such machines for years. The impact of the introduction of
multiple CPUs on software design, however, has been negligible because their use has
been primarily to improve throughput within the job stream not within a single job. In
1982-3 CRI began to offer "multitasking" of a single job on multiple-CPU CRAY X-MPs.
More recently, IBM has offered operating systems enhancements that allow the single
Fortran program the ability to utilize multiple CPUs in the 3090/400. This indeed has
software design implications.

Before discussing forms of parallelism in more detail, several commonly used terms
employed in discussions of parallelism need to be defined. The terms are from a
classification scheme or taxonomy of computers due to Flynn (2-6]. The purpose of
defining them here, is not for classification, but for their utility in describing
potential uses of given computer designs. The terms represent computer processes for
performing instructions and the flow of data resulting from these instructions. They
are defined as follows:

SISD (single instruction stream/single data stream) - this is the conventional approach
to computers, today often called scalar computing (which is slightly inaccurate, except
that most scalar computers are also SISDI. The concept is that instructions are
processed sequentially and result in a flow of data from memory to functional units and
back to memory (perhaps through caches or registers). The data flow is equally
sequential. This does not exclude pipelining in the process, but does exclude
manipulation of vector data types explicitly.

SIMD (single instruction stream/multiple data stream) - the processing of instructions
remains the same, but the data manipulated can be explicitly vector data. In parallel
machines the data could come from separate memories simultaneously. In vector machines
the process could be argued as still being SISD with the instructions simply being

-L " _ -- A - - _

macros (microcoded subprograms) launching SISD processes. This latter interpretation
has been dropped since the process of vector computers is more similar in nature to true
parallel SIMD from a software design perspective. Each "vector" instruction is viewed
as manipulating an array of data stored in single or multiple memories according to the
architectural design.

MIMD (multiple instruction stream/multiple data stream) - this process implies the
ability to simultaneously process (decode) instructions. These instructions are then
free to process independent data streamr.

While the above are distinct processes, the architectures that implement them can be
quite varied and, in some cases, support more than one of the above. The three
techniques of parallelism in hardware design seem to be most common:

1. Simple replication--Identical and multiple operation of hardware
functional units and/or CPUs.

2. Multiple non-identical functional units.

3. Pipelining -- the segmentation of a single functional unit or
process to achieve assembly line type operation leading to the
simultaneous overlap of independent inputs.

It is interesting to note, that it is rather difficult to categorize machines by the
above definitions, and even if one could, the implications of each class is not very
distinctive in terms of its impact on software.

Combinations of these parallel hardware design techniques can be, and are, employed in
subtle ways. Perhaps the more obvious uses of these techniques are related to the
floating point computation process in modern computers. In fact, all of these
techniques have been used in the processing of instructions by various computers over
the years. It is quite likely that computers of the future will increase the use of
these techniques in all three areas of computer desi;n: computation (functional units),
instruction processing (instruction or control units), and data movement and handling
(memory and I/O).

The simplest of technique is replication. Yet, its simplicity becomes obscure when
considered against the variations in its implementation. For example, consider employing
replication in floating point computation. Immediately, there are two choices. One can
design the CPU to include more than one functional unit, such as a floating point adder.
One could employ any number. This of course has fundamental software implications
beginning with the compiler (usually Fortran) which does not have any concrete way to
restructure software to insure that two or more adders can be kept busy. Furthermore,
there is an issue related to "hardware balance." Increasing computational power without
a corresponding increase in bandwidth to data memory can create a serious bottleneck
that could easily nullify the value of increased functional units. Another way to use
replication to improve floating point performance is to simply add more CPUs. Thi& ,ot
only increases the number of floating point units, but increases the number of
instruction processors. This creates further decisions to be made about data flow. In
this situation the Fortran compiler is helpless. The compiler must be extended to handle
parallel constructs and/or provide tools for direct user intervention. In this setting,
questions arise related to memory contention, multiple memory units dedicated to each
new CPU. (In Section 2.3 several parallel architectures will be discussed and
contrasted.) As mentioned before, multiple CPUs can be used solely to increase
throughput in the job stream and have little effect on individual jobs, or mechanisms
can be added to the operating system and programming language to allow the multiple Cpus
to be used on one computation. The latter approach has considerable impact on software,
and the payoff is a "delicate" function of the number of CPUs provided. From a single
job perspective the latter approach can be an MIMD process, and the forme. a SISD or
SIMD process. In fact, a successful computer architect, employing replicated
parallelism, invariably must make strategic decisions related to the ultimate use of the
new design -- at the very least it must be decided whether the primary goal of user
interaction will be via SISD, SIMD, or MIMD processes.

The second approach to parallelism is only a refinement of simple replication. Instead
of the addition of identical units, add functional units that are independent, and
perhaps different. This could be accomplished in many ways. The overlap of instruction
address computation with the floating point units is a common instance of this type of
parallelism. Another recent example is the addition of floating point accelerators and
matrix multipliers in various designs. These are simply added to the computers CPU.
The "parallelism" comes from the concurrent operation of t'aese units as independent
functional units. Perhaps the most pervasive use of this technique is in the Floating
Point Systems array processor. The system is composed of 10 to 15 functional units
including various types of data storage and registers (data pads). The instruction word
is wide enough so that in a single instruction as many as 13 simultaneous instructions
can be directed independently. (Viewed in this manner one would classify the whole FeS
line as MIMD. In fact, most computer taxonomies have difficulty classifying the FPS
architecture.)

Probably the most used form of parallelism in modern scientific computers, is
pipelining. The analogy of the automobile assembly line is often applied to this

!AL

18

process. In Section 2.2, specific implementations of pipelined arithmetic units will be
examined in the context of the total CPU architecture. Here, as an introduction, a
brief description of a pipelined floating point addition unit is given.

Typically, high performance computers are at the peak of hardware chip gate and
interconnect speeds for a given price performance. The cycle time, or clock period is
the predesigned synchronization period for the various simultaneous functions that go on
in a CPU. Most of these functions are completed within a single cycle. Floating point
operations, in general, are among the most complex operations and are typically executed
in four or five machine cycles. (See Figure 2-4) Pipelining the operation of a
functional unit, in today's supercomputer technology, often leads to a functional unit
that requires 7 or 8 cycles to produce a single result.

A

Scalar - (A + B)
Adder

B

Figure 2-4
Scalar Computation

At first glance, this is not a very good trade-off. In fact, pipelined units are much
slower in producing a single result. Their utility is only realized through both
software and hardware instruction processing changes. This will be discussed at length
in Section 2.3. In order to describe the pipeline process, consider Figure 2-5.
Assuming that a steady "stream" of data is provided to the pipelined unit, an assembly
line processing can be implemented using a "segmentation" of the task. Figure 2-5
illustrates the result of providing 8 operand pairs to the pipeline in Figure 2-6 after
the process is eight cycles in to production.

Assembly Line Using Vectors A = (A1,A2,A3,...)

B = (B1,B2,B3,....)

... A5,AA,A3,A2,A1

- 1 2 1 3 4 5

...B5,B4,B3,B2,B1

Figure 2-5
Pipelined Aritbmetic

The result is, that at the end of eight cycles, each successive operand pair is in some
stage of completion. If the "stream" is long enough, every cycle after the eight
produces a result. The ay,,,)totic result is an operation every cycle rather than one
every three or four cycles as in Figure 2-4. This process has been exploited in many
computer designs.

A8 A7 A6 A5 A4 A31 A2
B8 67 86 B5 B4 B3 B2 (Al+ Bi)

Figure 2-6
Pipelined Arithmetic: A Snapshot

It is important to note that pipelined processes often can be successively combined to
yield even more effective results. This process has been npned differently by various
manufacturers. "Chaining" or "linking" are the most common terms used for this
successive combination process. The process is one of taking the results of one
pipelined process and streaming them into another. Figure 2-7 illustrates the "chaining"
of an add and multiply. The most common use of chaining occurs in memory fetch/store
pipelines being chained into functional units through buffers or registers.

X TSK I
A*B -. ouPut

TASK 2
X~~A+B

input L. ~ i ~ X . utput
z/

Figure 2-7
Chaining

In the case of today's supercomputer pipelining has been implemented with an SIND
process producing enormous gains in computer performance. This introductory discussion
of pipelining will be amplified and refined in. various settings throughout this chapter.
while we have examined the pinelining of a f., "-i'add ':nit, examples of pipelined
instruction processors, memory fetch/store, and even pipelined usage of parallel CPUs
exist in today's commercially available computer designs. A unique example of
architectural ingenuity employing pipelining is given in the next subsection.

2.1.4 An Unusual Example of Computer Architecture: The HEP

In the previous sections we have discussed three forms of parallelism (CPU replication,
multiple functional units, and pipelining). In addition, three types of processes (SISD,
SIMD, and MIMD) were described. As will be observed in the next section, the term
supercomputer has been almost universally applied to the class of pipelined machines

that employed SIMD processing. In fact, the difference between the pipelined, yet
scalar, CDC 7600 and the pipelined, but vector oriented, CRAY-i is primarily the
expansion of hardware philosophy to create a SIMD process. In this section, using the
Denelcor Heterogeneous Element Processor (HEP), many of the concepts of the previous
sections will be illustrated in unusual ways, for this is an unusual design. We will
not debate the merits or disadvantages of this computer, but explore the unusual
application of pipelining, replicated parallelism, SIMD, and MIMD processes that result.
For a more in-depth look at the HEP, see [2-13].

The heart of the HEP is the central processing unit called Process Execution Modules or
PEM. The design can accommodate up to 16 PEMs. Figure 2-8 illustrates a classic
approach to simple parallelism through replicated CPUs and data memory. In this
approach the memory modules are accessible through a switching network. (Section 2.3
will discuss other approaches in multiple CPU architecturc.)

1/0 Cache

I IOrir-T 7 / 0 er
I'/0 Chdrneio buia /0

Control eeces

Multi-PEN, HEP SystemFigure 2-8

The HEP design supports full MIMD processing. Coordination and synch: oni zat::'
accomplished through simple extensions to Fortran allowing memory based "as.
synchronization. The system can also support both independent lob streams a'd
logical equivalent of more classical SIMD lock step processing.

Program Memory

Regster I Constant
Merm, Memory

Task

Que'ue.s

Control Unit
Process
Queue

CFU IFU + * SiareSpareSpare HA

Create Funct, Unit SFU Spare Spare

Switch

Denelcor HEP, a Single PEN

Figure 2-9

V..

The more unusual application of parallelism and pipelining occurs within the PFN itself.
Each PEM can support up to 8 instruction streams concurrently. Figure 2-9 displays the
hardware diagram of a single PEM. One normally would expect 8 instruction streams to
require 8 instruction processors. The HEP approach was to apply the pipeline concept to
the instruction processor (IP). This is, however, a simplification. In reality the
entire CPU is replicated through pipelining. The system segmentation is implemented in 8
segments. The instruction processor, the functional units such as the add/multiply, and
the memory fetch/store units have this level of segmentation. The result of this
strategy is to "hide" the hardware latency of the pipelining process. The latency is
hidden in the sense that for a given instruction stream, instructions issue every eight
cycles. Therefore, the instruction stream cycle time is effectively eight cycles--thus,
hiding the latency. To be more precise, the instruction processing is split into eight
steps in pipeline fashion, so that at any given instance as many as 8 instructions are
in some stage of execution. The pipelining is effectively "chained" throughout the
system among all the functional units. As an example, if 8 successive add instructions
were issued to a PEM (assuming no memory or other resource contention is encountered),
the PEM would be processing 8 successive additions in both the instruction and
functional unit pipes. This would be the beginning of an SIMD add. Logically, the
system has more flexibility than simple SIMD processing. The eight instructions can oe
associated with 8 separate processes. In fact, treating the PEM as logically 8 separate
CPUs is quite often the way in which the HEP was described by Denelcor. The 8 logical
CPUs could support up to 50 parallel processes. The synchronization of these processes
on the HEP was done through very simple extensions to Fortran. Since all processes
shared one common physical memory, a simple set of semiphore variables were added to the
Fortran language. This allows memory locations to be open or closed by each process
creating the ability to synchronize according to the state of certain memory variables.
Processes trying to access unavailable data or other functional units are held in a
logical spin state until the required resources become available. It is not uncommon
for parallel computers to have simple mechanisms for synchronization and
parallelization. This, however, does not necessarily mean that common algorithms or
applications are easily or naturally parallelized.

The HEP is no longer made, and never seriously contended with the modern supercomputers
of its day (largely due to its slow circuit speeds and the economic realities of a small
company -- that is, the ability to finance the necessary commercial upgrade required to
be competitive in a timely fashion.) Nevertheless, the unique application of
pipelining, parallelism, and data memory access showed an amazing degree of innovation.
Other unusual applications of parallelism in instruction processing are anticipated over
the next few years. Architectures with large parallel instruction words are already in
design. Data flow machines which treat the instructions as the entities to be
parallelized, as well as the the data, are also available.

2.1.5 Advanced Concepts in Algorithm Pipelining

In the previous sections we have discussed hardware techniques to increase the
concurrency (and hence speed) in computation. The techniques often used involve
replication, multiple functional units, and pipelining. Given that these are used
individually or in combination in a hardware design, a natural extension of their
performance improving power can be employed through a process called "algorithm
pipelining." This is not a standard term, in fact, it is often not described in
treatises of this kind. Yet, it is often employed by application programmers, compilel
writers, and even hardware designers themselves. While the concept will be described
generically in this section, the technique is used by at least two hardware vendors,
Alliant and Floating Point Systems. In the case of the Alliant, this concept of
"algorithm pipelining" is employed by the compiler. In the case of FPS, the concept is
the basis of programming methodology used in programming in the assembler for the FPS
line of array and attached processors.

Algorithm pipelining is the extensive use of the linking of functional units through
software decomposition. Chaining, as described in the pipelining discussion, could be
considered the very simplest form of algorithm pipelining. This was described as a
hardware assisted process of streaming the output of one functional unit into another
functional unit -- thereby linking the two already segmented units into a bigger
functional unit performing two tasks instead of one. Software pipelining is simply the
logical extension of this process through the use of both hardware and software to link
input and output of functional units of any kind.

One form of algorithm pipelining can occur when a computer design allows for more than
one instruction to be processed simultaneously. The HEP, for example, can provide a
linking between processes causing a form of chaining of one instruction stream with
another. The FPS-164/264 issues single instruction words which are coded to allow as
many as 13 simultaneous instructions to be issued at the same time (cycle). Through
clever use of main memory, data pads, and table memory, one can write an inner product
loop on FPS machines that is one cycle in length. The essence of the loop is the
chaining of functional units. Once the loop is full the various functional units are
operating simultaneously, but on different data operands in a pipelined fashion. A
third example of algorithm pipelining results from the innovative use of parallel CPUs.
This form of algorithm pipeline is illustrated by an example from the Alliant Computer

22

Company's Product Summary (2-71. The example deals with vector data dependency which is
strictly ruled out when utilizing SIMD vector processors. Consider the following scalar
loop, typical of large application programs.

DO 24 I = 1, IEND
X = FT(I)*FLOAT(N)
X2 = 2. *X
X21 = X2 - 1.
DF = X21/X2
DFI = DF * R
DF2 = DFl DFl
FF = F(I) + DF2
F(I+l) = FF
AF = ABS(DF2/F(I+))
IF(AF.LE.EPS) GOTO 25

24 CONTINUE

The vector F, which is manipulated in the loop, violates the fundamental principle of a
vector operation. The "result" vector F is not independent of the "input" vector F. In
particular, F(I+1) depends on F(I) as highlighted. Using multiple CPUs in MIMD
(asynchronous) fashion, it is still possible to achieve a speed up of this inherently
non-vectorizable loop. Imagine three CPUs are being employed, and that they begin to
operate on copies of the loop for successive values for I. The first CPU will be able
to process the entire first pass of the loop without interruption. The second CPU will
have to pause at the statement with the arrow (above) because F(2) is not yet available.
The pause (ignoring cache or memory conflicts) will be one cycle while the first CPU
finishes the calculation of F(2). CPU number 3 also paused at the same statement
awaiting the calculation of F(3) in CPU-2. In the mean time, CPU has begun the fourth
loop iteration which requires F(4 from CPU-3. This will be calculated and available by
the time it is required. This process repeats until all 3-CPUs are running
simultaneously on different iterations of the loop. After the initial three loop
iterations there is very little pause time. One can view this process as algorith'
pipelining. Each pass through the loop enters the 3-CPU computation as CPUs are
available and is process as data dependencies are resolved by the exchange of data
between CPUs. This latter process is accomplished by the compiler through extensive
pre-execution dependency analysis. The Alliant hardware facilitates the interchange of
data and MIMD processing with little or no synchronization overhead beyond the wait time
for data dependency resolution.

• ************ IMPORTANT CONCEPTS *********

o There is an ever increasing requirement for increased computer power:

- more refined gridding or more dimensions
- more complex and realistic physical models
- improved user interfaces drive more complex processes
- creation of optimal design tools from traditional analysis programs

0 Traditional computer designs have hit fundamental technological barriers in
chip technology requiring innovation in computer architecture in order to meet
computational demand.

0 Three common forms of parallelism in computer architecture have been used for
a number of years.

- simple replication of CPUs or functional units
- simultaneous operation of functional units
- pipelined processes

0 The manipulation of vectors has been the key approach to today's
supercomputers. The most common approach has been SIMD (single instruction,
multiple data stream) processing. The advent of parallel CPUs allows for MIMD
(multiple instruction, multiple data stream)computing.

0 Novel approaches to processing instructions have led to unusual computer
designs and processes. The HEP is an example of pipelined instruction streams
that support MIMD processing.

o With the advent of multiple CPUs, multiple functional units, and MIMD
processing, a new form of optimization, "algorithm pipelining" is possible on
many hardware designs.

23

2.2 SUPERCOWITR ARCHITCTURR

2.2.1 Scope

The term supercomputer almost defies definition. Debates rage among vendors, users, and
even procurement organizations, as to what is, and what is not, a supercomputer. The
glossary in Appendix A offers the following definition:

The class of general purpose computers that are both faster than their
commercial competitors AND have sufficient central memory to store the
problem sets for which they are designed.

The notions of "fast" or "computer power" are equally elusive. In the final analysis, a
computer that can solve the most meaningful problems, that are otherwise computationally
intractable, with reasonable real-time throughput, will be included in the class of
supercomputers. Those machines that are considered "supercomputers" are often endowed
with some technological and architectural features that set them apart from more
commonly available machines. It is not unusual for machines sharing such distinguishing
features to be included in the class of supercomputers. This can lead to some false or
misleading claims. For example, today's supercomputers generally have pipelined
architecture. Many of today's mid-range computers are using the same approach to
performance improvement. Some call themselves small supercomputers -- not because of
the above definition, but because they share "vector" technology with the larger
machines. This is a misnomer that leads to some confusion.

As of this writing, there are 5 companies currently marketing commercially available
supercomputers. They are Cray Research, Inc. (CRI), ETA Systems/CDC, Fujitsu/Amdahl,
Hitachi, Nippon Electric Co. (NEC). Even though IBM tends to avoid the term
supercomputer, one could justifiably include the 3090/600 with vector facility.
Similarly, one could include the National Advanced Systems 9100 series, a compatible
competitor of the 3090/VF. Once these machines have been included in the discussion,
then other more recent computers might also be added, such as the UNISYS vector
processor which can achieve higher peak ratings than the latter machines. In similar
fashion, one could begin to include other vendor machines, and soon, the list is so long
that one loses sight of the original goal: to overview the "very" top end mature
supercomputers available. With this goal in mind, we have decided to concentrate on the
following machines as examples of modern supercomputer technology:

CRAY-l, CRAY X-MP, CRAY-2
CYBER 205, ETA GF-10
FUJITSU VP 200/400 (AMDAHL 1200/1400)
HITACHI S-810
NEC SX-2
IBM 3090/VF

These machines are currently commercially available, general purpose, and have a market
focus toward engineering/scientific computing.

In this section an overview of supercomputer architecture is given, but from a
computational perspective. In Section 2.3, a discussion of parallel computers and
minisupercomputers is given with the perspective of identifying likely trends in
computer architectures in the near future. In the remainder of Section 2.2, those
elements of computer design that directly impact scientific computation will be
emphasized. An expert in computer hardware might find the descriptions somewhat
lacking in detail, yet detail is expressly being avoided, except as it impacts
computation and algorithm design.

2.2.2 Growth in Computational Power

In Section 2.1.1 the need for increased computational power was discussed. This
requirement for more power pervades many (if not all technologies.) The economic
realities of the market at this high end of computing has changed dramatically. One of
the most successful computer companies today by any financial measure you pick,has to be
CRI. Nevertheless, this is a high risk-low volume market, and the number of players
has been very small. The birth of the industry must be credited to the early financial
support of the government labs, who saw a direct relation between national security and
the ability to "compute" scientific phenomena. Indeed, early models of US
supercomputers invariably go to the government labs. In Europe, the government
influence seems to be exercised more frequently through academic institutions. A brief
examination of the computational power afforded by modern supercomputers reveals an
astonishing growth in floating point computation rates and memory size. Figure 2-10
illustrates this growth in terms of a fundamental metric often used (and sometimes
abused) by supercomputer manufacturers. This metric is measure of the "peak" possible
performance in floating point operations per second. This parameter is often given in
millions (MFLOPs) or, more recently, billions (GFLOPs) of floating point operations per
second.

AS-AR

24

CDC 7600
1.974

CRAY-i
1978

CYBER 205
1980

CRAY X-MP/l
1982

FUJITSU VP-200
1984

HITACHI S-810
1984

CRAY X-MP/4
1984

FUJITSU VP-400
1985

CRAY-2 Ro
1985 __________

0.00 400.0 00 1200.00 1600.00 2000. 00

W MFLOPS

Figure 2-10
Growth in Power: MFLOPS

There are two facts worthy of note. First, the increases in computational growth, of
say, a factor of 10, are occurring with shorter and shorter time constants. That is,
what took the industry 6 years to accomplish in improving performance, it now is
achieving in 3 years. Second, the performance improvements are not being achieved by
electronic circuitry alone. For example, the CDC 7600 could achieve a 2-5 KFLOP
computational rate with a machine cycle time of 27.5 nanoseconds. The CRAy-l could
achieve 160 MFLOPs with a cycle time of 12.5 nanoseconds. Thus, a factor of 32
improvement in peak performance with only a factor of 2.2 improvement in machine cycle
time. The trend, as you go down the chart, is similar. Both of these facts are
attributable to the same source, the computer architect. Once the market place accepted
the burden of computational complexity resulting from architectural changes, computer
manufact',.rers could easily increase "peak" performance potential. This "burden" of
complexity will be the focus of Chapter 3.

To match the ever increasing capability of processing floating point operations, vendors
have had to supply improved memory capacity. Figure 2-11 reveals that this growth in
capacity has been quite impressive as well.

CDC 6600 CYBER 760

CRAY-i S Fujitsu 32 MW

64 EBit Words

CRAY 2 264 -1000 MW
64 Bit Words

Figure 2-11
Growth in Memory

How are these phes,senal improvements accomplished? What are the specific design tricks
being employed by architects to achieve these performance increases? in reality the
approaches are both similar and yet very different among current supercomputers. Like a

MAU L

71S

baker making a batch of cookies, when he is done, no one questions that the result are
cookies; yet, the ingredients might be very different between chefs. In the next
section, the salient features (ingredients) of a supercomputer CPU will be described.
In addition, the various supercomputers will be contrasted and compared according to
their respective implementation of each feature. In Chapter 3, the impact of each
feature will be examined on various basic computational kernels often used in scientific
computation.

2.2.3 An Overview of Supercomputers' CPUs

In Figure 2-12 a simple generic diagram of a supercomputer central processing unit is
displayed. While several vendors of supercomputers offer multiple CPU machines, the
discussion initially will concentrate on a single CPU. Multiple CPU machines from CRI
and ETA Systems will be discussed in Section 2.2.4. The figure itself is more symbolic
than an actual replica of a manufacturer's hardware diagram.

S..nda. Mmor I

I I.

Scalar
Control Units and

Registers

Figure 2-12
A Supercomputer CPU

The following features will be discussed at length:

SCALAR AND VECTOR FLOATING POINT UNITS
PRIMARY AND SECONDARY MEMORY
INTERFACE (BETWEEN MEMORY AND VECTOR UNITS)
PATHS TO/FROM MEMORY
CONTROL (INSTRUCTION) PROCESSOR
SECONDARY STORAGE.

In, and of itself, no feature above is a sufficiently important parameter for assessing
computer performance. The interplay or "balance" between these elements, however, give
the computational character of a given computer. The most distinctive feature of modern
supercomputers is their orientation toward processing "vectors" or arrays of elements as
operands. For years the computational bottleneck in scientific computing was the
processing of floating point computations. The CDC 6600, for example, tried to improve
this bottleneck by using two floating point multiply units. Later the CDC 7600
exploited the pipelined concept in the functional units. Interestingly enough, the
floating point units on the 7600 were, all too often, left idle. The bottleneck to
computation was the rate of instruction processing associated with the overhead of
fetching and storing each pair of operands and/or result. The first modern
supercomputers (the CDC Star-100 and the CRAY-l) circumvented this "instruction-issue"
bottleneck by extending the instruction set to include vector operations. This coupled
with a high bandwidth connection between the vector units and memory, through an
interface (buffer or registers), characterizes modern supercomputer CPUs. In these, and
subsequent supercomputer designs, one single instruction could launch a process that
operated, not on one, but many operand pairs. The production rate of floating point
operations became a much more meaningful measure of performance than did machine
instruction rates. With the advent of the "vector" computer, the performance rating of
millions of machine instructions per second (MIPs) gave way to the MFLOP mentioned
earlier.

Each of the characteristic features of modern supercomputers deserves further
discussion. To that end, a brief discussion of each feature is offered below. Many of
the principles discussed will be utilized in the algorithm discussions in following
chapters.

26

The Scalar and Vector Units

The most successful supercomputer designs have struck a very delicate balance between
the scalar processing speed and the vector processing speed. All of the supercomputers
discussed exploit pipelining in their vector floating point units. In the case of the
CRAY series, scalar floating point computations also use the floating point vector
units. In other designs separate scalar floating point units are included. In many
ways the marriage between scalar and vector processing is more philosophical than one
would imagine. Some designs were forged out of a priority to create a "vector"
computer, with scalar computing provided as a necessary, but unimportant, adjunct, much
like the letter "q" on an English typewriter. It is necessary, but used so little that
it can be placed in a remote area of the keyboard. The CDC SLtr-100 is a prime example.
Its original design was, in philosophy, an attempt to implement the APL computer
language in hardware. This language was designed to program and manipulate
vector/matrix related computations. Scalar instructions in this environment were viewed
as unnecessary and to be avoided. Early usage was primarily in Fortran, and revealed
that scalar performance was a far too critical ingredient in program efticiency to be
ignored. In an effort to improve the scalar/vector balance, the CYBER 203 was created.
The 203, however, was quickly followed by the CYBER 205 with improved vector speed over
the STAR-100. The result was that the 205 had slightly poorer balance between scalar
and vector rates than the 203, but still much better balance than the Star-100. The
CYBER 205 has 32 times the scalar speed of the Star-100 and only 10 times the vector
speed. Even "ith this improvement in scalar speed the CYBER 205 is often criticized as
being too slow in its scalar processing for many scientific applications.

Another philosophical approach to supercomputer design is to take a good scalar computer
and "add" to it the salient features of vector processing (vector instructions and
pipelined vector units). This approach has been adopted by IBM and its Japanese
competitors. The philosophy can be observed in some minisupercomputer designs to be
discussed later. The efficacy of such an approach varies with its implementation. Yet,
it is often observed, that machines with poorly designed vector implementations, often
suffer from some data movement bottleneck typical of poor internal bandwidth which , in
turn, is related to the scalar design. That is, when a vector processing capability is
superimposed over a fundamentally scalar design, the bandwidth of internal data flow
(from memory to and from the functional units), inherent in the original scalar design,
cannot support the vector data stream requirements of the vector floating point units.

Probably one of the most significant features of the CRAY-1I is the balance of vector and
scalar processing. Not only is the scalar speed fairly fast relative to the vector
speeds, but the internal bandwidth of data flow to support vector instruction execution,
was far superior to its competitors at the time of its introduction. All successful
vector oriented processors have achieved "good" scalar/vector balance. This balance
does vary, and it is worthwhile to look carefully at the implementations of vector
processing found in several machines. To begin, the vector units will be examined more
closely.

The number of floating point units and their basic result rates differ among the
various vendors as indicated by the following table. The number of segments in the
pipelines also effects the startup time. Rather than list the number of segments
another parameter will be discussed later that can be more useful in judging the effects
of variations in segmentation among various machine architectures. Another feature,
that is critical, is the "chaining" or "linking" of results from one floating point unit
into another. (refer to Section 2.1.3, Figure 2-7.)

Vector Floating Point Characteristics

VECT. UNITS
PER CPU PIPE CYCLE , CHAINING

COMPUTER (+,*, or /) in nanosec.

CRAY-1 2 12.5 yes
CRAY X-MP 2 8.5 (9.5) yes
CRAY-2 2 4.1 no
CYBER 205 1, (2, 4) 20.0 (yes)
ETA-10/E * 2 10.5 yes
FUJ. VP 1)0 3 14.8 (15.0) yes
FUJ. VP 200 3 (6) 7.5 yes
FUJ. VP 400 3 (12) 7.5 yes
HIT. S-810/20 2 14.0 yes
IBM 3090/VF 2 17.2 (18.5) yes
NEC SX-I 2 (8) 7 yes
NEC SX-2 2 (16) 6 yes

parenthetical cycle times indicate the original times when the
machine was introduced. The current upgraded cycle times are
listed whenever possible. In the case of Fujitsu and CYBER 205,
the pipe cycle is not the "major" cycle, or machine instruction
issue cycle, but the peak rate at which the floating point pipes
can produce results.

TABLE 2-4

27

Unfortunately, one cannot infer peak performance directly from the table above, as one
might expect. For example, the Fujitsu VP-200 is listed with 3 functional unit pipes.
The three indicates add, multiply, and divide. Each add pipe is actually two pipelines
in parallel running at a 7.5 minor cycle time. The computer's major cycle time (i.e.
instruction issue cycle time) is 15 nanoseconds. Based on this one might conclude that
an asymptotic performance rate of 800 MFLOPs is attainable on the VP-200 (i.e. 6 pipes
with 7.5 nanosecond minor cycle). In fact, only two of the three pipelines are allowed
to operate simultaneously, thus the real peak performance rate is 533 MFLOPs. Taking
into account these anomalies, and each machine has its own set of anomalies, the
following table lists the peak performance rate in MFLOPS for each computer in Table 2-
4. This should be interpreted as the rate at which each computer is guaranteed not to
exceed, and not as a meaningful measure of performance.

Peak Performance Rates

SINGLE CPU
COMPUTER PEAK MFLOP RATING

CRAY-1 160
CRAY X-MP 233 (210)
CRAY-2 : 488
CYBER 205 200 (2-PIPE, 64-BIT)
ETA-10 (1986) : 350
ETA-10/E 415
ETA-10/G (1988): 625
FUJ. VP 100 271 (267)
FUJ. VP 200 : 533
FUJ. VP 400 : 1067
HIT. S-810/20 630
IBM 3090/VF 116 (108)
NEC SX-I . 570
NEC SK-2 : 1300

Note: The parenthetical entries indicate performance figures for the original
performance before recent improvements in cycle times.

TABLE 2-5

To achieve peak performance for an entire machine, the single CPU MFLOP rating is
usually multiplied by the number of CPUs. With this approach one could project CRAY-3
and ETA Systems performances into the 5 to 15 GFLOP range. To appreciate the rapid
change in this environment, at the time of this writing announcements are pending on a
1.76 GPLOP single CPU capability from Fujitsu, 2 GFLOP/CPU (4-headed) Hitachi, and
multiple headed NEC machines. It is also considered likely that IBM will enter this
market with a "true" supercomputer as opposed to a retrofitted 3090. It is very likely
that by early 1990 no machine under 10 GFLOPS will be considered a supercomputer. A
conservative estimate would be that by 1995 there will be TeraFlop (1,000,000 MFLOP)
general purpose supercomputers.

So far, the data presented lacks a dimension of performance related to the degradation
that can occur when one does not use long vectors on vector computers. In reference [2-
8], the term "depth of parallelism" is defined. When using an N-segment pipelined
functional unit, an N-fold concurrency is being employed. If, in addition, a number, M,
(of N-segmented) pipes is being used, the "concurrency" is N*M. That is, there is the
possibility of N*M operand pairs being in some stage of computation in a given cycle.
Intuitively, one suspects the higher the depth of parallelism the greater the penalty
for not providing long vectors to operate on. A more elegant and more easily verified
measure of this degradation is given by Hockney and Jesshope [2-4]. The term is called
N1, 2 (N sub a half). Given an operation (or even an algorithm), N11 2 is defined to be
the length of a vector to achieve one half the asymptotic peak performance for the given
operation (or algorithm). One can see that this measure is a function of pipe
segmentation and chaining for a given operation or set of operations. Perhaps the best
way to visualize this term is graphically. Figure 2-13 displays the performance in
MFLOPs for the vector triad , a*X+Y (a scalar, "a", times a vector "X" 2lus a vector
"Y", or called SAXPY after reference (2-101), as a function of vector length. The curve
is obtained by modeling the time of a vector operation as follows:

T = S + K'N, (2-1)

where S is the startup time to fill the pipeline, and K is a constant (related to the
pipe cycle time). Solving this equation for computation per unit of time yields,

N/T = I/(S/N+K).

r-A

28

As N approaches infinity, N/T approaches the asymptotic rate, R, for the vector process,
as indicated in Figure 2-13. In Section 3.2 a curious relationship between the depth of
parallelism and N11 2 is derived for pipeline operations.

200---------------------

1/K = R
160---------------------------

MFLOPS 8 N 180

T S/N + K

N 1 / 2
Figure 2-13

characteristic curve for a Vector Operation

Figure 2-13 is an idealized curve for most vector computers because the timing model
given by Equation 2-1 represents an idealized linear model. There are many reasons why
the true time for a vector operation is not necessarily linear. on S.me machin-, se-h
.s the IBM 3090/VF, the data for the vector operation process is fed by a cache (see
glossary). This can cause deviation from the linear model due to cache "misses". (When
feeding data to functional units or registers from a cache, the required data is
sometimes not available in the cache. When this occurs, an automatic process is begun
by the system to refill the cache with a section of memory containing the wanted data.
This causes considerable delay, and is often termed a cache "miss", referring to the
interrupt ion caused by the cache refill algorithm.) Anuther more common deviation from
the linear model comes from the use of registers (to be described below in greater
detail.) For example, on the CRAY series of computers, vectors are handled in blocks of
64 words, corresponding to the depth of the vector registers. Thus, if a vector of
length 250 were to be processed, it would be done by dividing it into three vectors of
length 64 and one vector of length 58. The precise timing model for a CRAY-l is given
below after Bucher [2-9].

T = SOUT I N (SIN/
6 4

I TEL), (2-2)

where SOUT is the initial startup time for the whole process (the outer loop), SIN is
the startup time of the inner loop of length 64 or less that cannot be overlapped with
other vector instructions, and TEL is the time to process one result element. Clearly,
these parameters irc beth hoo..:arc and ofL.:arc (compiler) related. The plot cf
Equation (2-2) is given in Figure (2-14). The parameters of the model vary with the
vector operations being formed.

10

I V[CTORP S70PED CtNTICUCUSLY
I0

4 L r

> N

0 C 0250

Figure 2-14
An Actual Timing Model: CRAY-1 (CPT 1.09)

. . . .~~~~ Ah., . .. -I ... 'AL_ . - -

29

The characteristic curve in Figure 2-13 would look about the same except it would have
small jump discontinuities for N equal to a multiple of 64. For most computers and
applications, a linear timing model will be adequate in describing performance. It is
interesting to note that the N1 /2 is roughly the same under either model for a given
operation and machine. In Chapter 3, both the asymptotic computational rate and the
N112 will be used to examine performance. To give some idea of how these parameters can
be used, consider the SAXPY operation. Two earlier supercomputers competed in the
marketplace for years, the CRAY-I and the CYBER 205. They have very different
characteristic curves, as displayed in Figure 2-15.

Cyber 205

200 - -2-PIPE
' J X-MP (-CP"-

160 - ----- - -------------
Y a 2CRAY-1

MFLOPS
80 -

N1/2z N, /2 2 N1/2 ~ 0

Figure 2-15
CRAY-1 and CYBER 205

The CYBER 205, 2-pipe using 64 bit arithmetic, has the higher asymptotic rate (200
MFLOPS vs. 155 MFLOPS). However, the NI/ for the CRAY-1 is on the order of N =25,
while it is over 200 for the CYBER 205. 4his means that if we were to perform the SAXPY
operation on vector lengths of 200 the CYBER 205 would run at 100 MFLOPS while the CRAY-
1 would be running very close to its maximum. In fact, a rule of thumb would be if the
vector length is over 3 times the N 1 2, the resulting vector operation will be very
close to its maximum. If on the otier hand, the average vector length is less than
NA/2, the resulting operations would be only using less than half the potential power of
tie machine. During the time the CYBER 205 and the CRAY-i competed in the market, most
scientists had not worried about vector length. By the time scientific programs began
producing longer vectors, the CRAY X-MP was released with a higher asymptotic maximum
(200 MFLOPS) with little degradation in N11 2.

The relationship between N112 and the peak asymptotic performance rate is a very curious
one. At face value, one would desire N11 2 to be small, and the asymptotic rate to be
high. However, in a purely scalar environment, N1/2 is one. By the introduction of
pipelining and/or parillelism the architect is able o increase maximum performance with
the same hardware circuit technology, but at the expense of scalar degradation due to
increased N11./ Each computer design is the result of alternate strategies of
parallelism, chip technology, and internal bandwidth. Table 2.5 below lists the N,,2
and the asymptotic rate of various computers in performing a SAXPY operation. e
results are due to Dongarra [2-11], and are the results of Fortran testing.
Considerable and significant differences can be obtained by carefully coding in
assembler. It is also possible to improve the results with more mature Fortran compilers
(e.g., the CRAY-2 result below casts dubious concerns on the maturity of the compiler
used.) A large N /2 is only justified by a significantly large performance potential.
Obviously, if the' value of N11 2 is so large that no reasonable program can produce
vector lengths large enough to take advantage of the potential peak performance, the
high MFLOP rating is meaningless. These issues will be explored in greater detail in
Chapter 3.

30

Values for N 11 2 , (Fortran SAXPY)

ACTUAL
COMPUTER : N1 1 2 PEAK PERFORMANCE

CRAY-I : 20 45
CRAY X-MP : 37 101
CRAY-2 30 55
CYBER 205 238 170
FUJ. VP 100 : 200 140
FUJ. VP 200 120 190
IBM 3090/VF : 34 53
NEC SX-l : 30 240
NEC SX-2 : 80 575

TABLE 2-6

... IMPORTANT CONCEPTS

Scalar and Vector Units

o The balance between scalar speed and vector speed has proven to be an
important characteristic of modern supercomputers. The greater the disparity
of performance between the scalar units and the vector units, the worse the
"balance".

o Peak performance ratings can be very misleading. The number of pipelined
units required to achieve peak performance, the startup time (and hence N/)
the cycle time, and the use of cache interfaces are but a sampling oV he
nardwdre teatures that can impact actual performance regardless of peak
ratings.

o Managing the instruction issue to achieve chaining of pipelined units can be
critical to performance in many hardware designs.

Primary and Secondary Memory

The improvements in chip and circuit technology have 'l1owed anufacturers to develop
large capacity memories at very low access times. The large and growing disparity
between memory speeds and secondary storage speed (e.g. disk) can create a very
pronounced degradation in throughput in programs with large amounts of data. Quite often
in scientific computation the storage requirements of intermediate data, generated
through the course of the computation, can exceed the storage requirements of the
original or final data. In such a situation tremendous performance gains can be
achieved by providing a secondary or tiered memory structure. The trend to tiered
memory seems to be a necessary approach to deal with the shortcomings of traditional
disks. The idea behind tiered nemory is both economic and technological. Secondary
memory, if properly used does not have to be accessed often. It can be made larger and
cheaper with slower access times than main memory, but with much higher bandwidth than
disk. From a user perspective, the lack of sufficient memory, the availability of
secondary storage, or the use of massively large memory systems present program design
challenges. This is particularly a problem when migrating software from an "old"
technology to a "newer" one. For example, early users of CRAY-l's often wrote to disk
when more memory was available, and early users of the CRAY-2, the largest main memory
machine available, would convert programs by having disk reads and writes changed to
memory reads and writes. This gave an instant improvement in performance, but is not
necessarily the best use of large memory machines.

The size of memories in today's supercomputers are really a function of chip technology.
Those companies that are vertically integrated such as the Japanese manufacturers and
IBM, have an advantage in accessing their latest technologies sooner than the
competition. CRI has been able to package denser memories through advanced cooling
techniques as opposed to advanced chip technology. The table below gives the relative
size (in terms of 64-bit words) of main memories for the computers under discussion as
of January 1987. In addition, two other parameters are provided: the time to access a
single word, and the single vector bandwidth. This latter rate, given in words per
second, is the asymptotic rate for accessing a vector of contiguously stored
components. One should take note that some of the computers listed allow for more than
one vector fetch/store simultaneously. This is not accounted for in the bandwidth data,
but addressed in discussion on "paths-to-memory" (to follow). Most wain memories have a
latency time -- a length of time required between successive data fetches. To
ameliorate the effects of this latency time, memory is often grouped into "banks" or
logical partitions. In this manner vector data can be accessed continuously (i.e.

31

without interruption) provided the data does not come from the same bank or very
recently accessed bank. This can be a problem for accessing vectors with power of 2
strides (for often the number of banks is a power of two.) The number of banks for each
computer is listed in the table as well.

Main Memory Sizes

COMPUTER size no. of bank
MW banks wait nsec)

CRAY X-MP 16 64 76.5
CRAY-2 256 128 140-170
ETA-10/E 128 n/a 214
FUJ. VP 200 32 128 55
FUJ. VP 400 32 256 55
HIT, s-820 32 128 70
NEC SX-2 32 512 40

TABLE 2-7

Memory plays a very crucial role in applications such as computational fluid dynamics.
However, large memory without a balance of computational power could create a step
backward. The use of large memory machines and the technique of employing tiered memory
machines are active research topics today. Memory size has long been a limiting factor
in computational fluid dynamics programs as will be observed in Chapters 4 and 5. In a
subsequent subsection we will examine secondaty storage and its relaticn to main memory
in more detail.

Interface (between Memory and the Vector Units)

The flow of data from the memory to the computational units is the most critical part of
the computer design. The object is to keep the functional units running at their peak
capacity. Through the use of proper interface (combinations of vector registers,
caches, local memories, or buffers) the maximum throughput can theoretically be
attained. In many ways the various interfaces are simply additional types of memory,
with high bandwidth and multi-ported connections to the vector units.

All the machines we have considered, thus far, utilize some form of vector registers
except the CYBER 205 and the ETA GF-10. These latter mathines employ hardware directed
"buffers" which provide a steady flow of data minimizing interruptions from memory.
Among the supercomputers under discussion, these two designs are the only ones that can
be classified as memory-to-memory computers. That is the functional vector units
operate on memory-stored data directly. In the case of the Cyber 205 and the GF-10, the
vector data is defined by its first-word location in memory and vector length.

The most common interfaces are "vector registers," first employed and patented by
Seymour Cray for the CRAY-l. Registers have been used in scalar computer designs for
years. The need to store temporary data in accessible fast memory has resulted in
registers employed in most conventional computer designs. Since modern supercomputers
manipulate "vectors" the idea of registers for easily accessed packets of data is most
reasonable. In many machines the functional units operate only on operands stored in
registers, and this is a common technique in the various register oriented vector
computers. The CRAY-l employs 8 vector registers of length 64 words. This results in
long vectors being manipulated in sub-blocks of 64 words. Table 2-8 lists the buffer or
register characteristics of supercomputers being considered.

Register and Buffer Characteristics

: SINGLE CPU REGISTER
COMPUTER CONFIGURATION (64-bit words)

CRAY X-MP 8 X 64 words
CRAY-2 8 X 64 words, plus 16K local memory
CYBER 205 buffer
ETA-10 buffer
FUJ. VP 200 reconfigurable 8 X 1024 . . . 256,X 16
FUJ. VP 400 reconfigurable 16 X 1024 . . . 512 X 16
HIT, S-820 32 X 256 words
IBM 3090/VF 8 X 64 words
NEC SX-2 40 X 256, 32 reconfigurable e.g. 64 X 128

TABLE 2-8

In some minisupercomputers and, in the case of the IBM 3090/VF, vector registers are fed
from a high speed (8K 64-bit words) cache. (See Figure 2-16.) In the case of the IBM
3090/VF, this cache has 8K words (64K bytes).

AL-,-. , 1 l l ,. N - .. i 1 _ L .. ,

32

Registers

One path Vector
Memory Cache units

contiguous and
regular plus

random

Figure 2-16

Cache-Interfaced Registers

The term cache refers to another form of storage. The term cache also infers that 'his
type of storage is automatially filled and emptied according to a fixed scheme defined
by the operating system and/or hardware design. For example, if a certain area of
memory is to be accessed in a cache based system, either it is already in the cache or
it is not. If the latter is the case, then there usually is a fixed algorithm for how
much of cache data is to be displaced by main memory data in a predescribed
neighborhood of the requested data. This should be distinguished from, say the CRAY-2,
which provides a 16K "local memory" in addition to registers. (See Figure 2-17.)

REGISTERS

ECTO

MEMORY

U

contiguous
and regular

plus
random

LOCAL
MEM
16K

Figure 2-17
Local Memory Enhanced Registers

The local memory on the CRAY-2 is written into, and fetched from, through user control.
Of course, compiler developers at CRI are also using the local memory to enhance
performance of executed programs to the benefit of Fortran users. The local memory is
not a required interface between the memory and the registers, but rather an auxiliary
storage place. Thus, it would be incorrect to call this local memory a cache. In
attempting to write efficient algorithms in a cache-based system, users often learn the
eccentricities of the cache algorithms and develop appropriate algorithm strategies to

prevent frequent filling of cache memory (i.e. algorithms that avoid cache misses.)
With either cache or with local memory, both the complexity and the flexibility of the
system is increased. The greatest advantage of such features occur when mature
compilers deal effectively with these new hardware features. Unfortunately, mature
compilers are not common place on new machines with innovative architectures. It will
be observed later that to relegate the use of special architectural features solely
to the domain of languages and compilers could quite easily relegate performance to less
than "super."

Paths-to-Memory

Referring to Figure 2-9, once again, one observes that the connection between memory and
the interface is termed "paths-to-memory." This is not necessarily a standard term of
computer jargon, but it conveys the sense of data access that algorithm design must
consider. All computer algorithms ultimately come down to series of operations. The
most efficient use of the current generation requires a high percentage of the
operations being executed in "vector mode" (i.e., on vector operands). Most elementary
operations involve two operands and one result. If the operation is a vector operation,
then quite often the operands are vectors and the result is a vector. In order to keep
the functional units busy, a well designed machine would have a high degree of memory
access afforded by extremely high bandwidth path-to-memory. In fact, more than one path-
to-memory is desirable. The Table 2-9 gives a listing of the number of vector paths
(i.e. read/store pipes) from the vector interface to main memory.

Paths-to-Memory

COMPUTER NO. OF PATHS- # PATHS/# PIPES LATENCY
TO-MEMORY in cycles

CRAY-1 1 .5 11
CRAY X-MP 3 1.5 14
CRAY-2 1 .5 35-50
CYBER 205 3 1.5 50
ETA-10 3 1.5 n/a
FUJ. VP 200 1 or 2* .5 or 1 31-33
FUJ. VP 400 1 .5 31-33
HIT, S-820 8 1.0 n/a
IBM 3090/VF -- associative --

NEC SX-2 12 .75 n/a

The Fuj. VP-200 has two paths t-7emory for contiguously stored
vector elements. For vectors with a stride or rand-ii, storage
only one path is available.

TABLE 2-9

In all cases, the process of memory access is a pipelined process. The second column in
the Table 2-9 is provided to normalize the data. Several of the machines listed have a
large number of paths due to the fact that they employ multiple pipes to achieve high
performance. Such machines require multiple hardware paths to fetch one logical vector
operand. For example, if a hardware design were to employ two tandem multiply pipelines
to achieve its peak performance, then to fetch two vector operands, four paths would be
required to achieve peak speed. Thus, in column two of the table, the number of hardVare
paths-to-memory is divided by the number of floating point pipelines being served. The
third column in the table gives the latency of the pipe; that is, the number of machine
cycles required to receive the first element from memory during a vector fetch.

The number of paths-to-memory has a direct bearing on efficiency and algorithm
performance. This can be illustrate by the following example. Again consider the SAXPY
operation,

DO 10 I = 1, N
10 Y(I) = A X(I) + Y(I).

This fundamental loop, employed in many linear algebraic operations, displays unusually
simple complexity. It is operating on two vectors and replacing one with the result.
This requires two vector fetches and one vector store, provided N is smaller than the
register size on a register oriented machine. If N is larger than the register lengths,
the process would proceed as described in Equation 2-2. Assume that the computer to be
used to perform this loop is register oriented, and that the multiply unit can be linked
to the add unit. In the following sequence of figures all other features are held
fixed, and the number of paths-to-memory is varied.

Each parallelogram in the figures indicate a vector operation. The x-axis indicates
increasing time, measured in machine cycl:s. For simplicity we assume all operations
(i.e. fetches, stores, and arithmetic) are pipelined with a fixed pipe length. The left

34

most edge of a parallelogram indicates the pipe length by signifying the point in time
at which the operation begins (top left corner) to the time the first element is out of
the pipe (bottom left corner). The upper edge, and lower edge are of length N
indicating the number of cycles required for the N elements of the vector to be read
from memory (top edge) and received into registers (bottom edge). The last element of
the vector enters the pipe (indicated by the upper right corner) and exits the pipe (as
indicated by the lower right corner).

I I

I One path to memory
3N-vector operations

*X +YI

I Store result I

N 2N 3N
Cycles

Figure 2-18
One-Path-to-Memory SAXPY

The figure displays the order of operation best suited to compute the SAXPY. It allows
chaining the multiply result into the adder saving needless memory references by having
to store the intermediate result. The entire operation takes order 3N cycles, neglecting
startup times. Cn: .an observe, however, that each functional unit is idle two thirds
of the elapsed time. The multiply unit, for example, is only used in the first order N
cycles, and the adder is used in the second order N cycles only. The pacing element of
the loop is memory referencing (reads and stores). Figure 2-19 displays the improvement
gained by providing one more path. Now vectors X and Y can be fetch simultaneously; the
multiply can be begun followed by chaining into the add. The only "dead" time occurs in
the second order N cycles due to the store. By providing another path to memory (for a
total of three), one can also chain the result of the add into the store and achieve an
order N process. Thus, ,ithout any inccase in speed in the functional units, a factor
of three improvement in loop performance is achieved. If one reflects on the method of
rating computer performance in peak MFLOPs, one can observe that a 1-path machine will
have the same peak performance as quoted by the manufacturer as a 3-path machine with
the same chip technology and functional unit structure. In fact, the performance is
quite different by any measure when applied to a simple, yet fundamental, loop such as
SAXPY.

Observe that the two-path loop looks very inefficient. For example, in the first N
cycles there are 2 reads, a multiply, and an add running simultaneously, while in the
second N cycles only the store is executing.

35

Read X II I
I I

a YTwo paths to memory2N-vector operations

I plus start-up

I I

\Z~~i\ inked1

i I
I I

Vi1i II

Three paths to memory
tor reresu t \ 1 N-vector operation

Figure 2-20 illustrates that _j. can improve the asymptotic performance of this loop on
a two-path machine by 50%. This is accomplished by dividing the vector into two sub-
vectors of length N12. The only requirement, for this to be successful, is that 1) the
vectors be long enough to ameliorate the extra startup times, and 2) that there be

sufficient vector registers. This same trick can be used to improve performance of a M
memory referenced loop on an M-1 path machine. These types of optimizations can be
critical to performance in key computation and are not often employed by compilers.

I
I
I I

N N 3/ 2N 3N

FIGURE 2-10

Two -Paths to r evirsi

iguraer -0ilutae theat canhes ipoe thospoi performance of wl thi loopse on

sufent vscto egites. Tise trjuicicnub use to mrovsperfomancewaofesao
memryi etrfece loopo a -lth nmace. hs ye of opths-tzatioos can bedt u eo

algorithmTwsignaths revisitede

\Read X~ (loop unrolling)

Re~dY ad X I

V(s~a~)(, af 1 .5N
I (50%/ faster) I

;ttrIS1. af \2dhalfI\

N/2 N 3N/2 2N 3N

FIGURE 2-20
Two-Paths and a Trick

In Chapter 3, the impact of these types of performance variations will be assessed on
several basic algorithms. Quite often judicious use of registers and an awareness of
architectural features such as the number of paths-to-memory can lead to superior
algorithm design and performance.

36

Memory Interfaces and Paths-to-Memory

" The flow of data in a supercomputer CPU from main memory to the floating point
and other functional units can vary. Currently, the following hardware
options can be found:

- buffers
- cache
- local memory
- registers
- combinations of the above

" An awareness of the above features in a particular hardware design can be
extremely useful when designing algorithms and optimizing existing or
selecting key computational kernels.

" Registers and local memories, through user control, can be very useful in
storing vector temporaries and thereby minimizing memory references. Caches
improve data flow in ideal situations, but cause user concern over algorithms
that can regularly cause cache "misses."

o The number of paths-to-memory, if insufficient, can cause severe performance

degradation if ignored. For complex loops, requiring many vectors and
temporaries, the combination of a sufficient number of paths, judicious use of
registers, and tricks like loop unrolling can be combined to make a
significant improvement performance.

Control or Instruction Processors

Thus far, only the aspects of computer architecture that directly effect computation
have been presented. In so doing, a number of hardware oriented technicalities have
been avoided. Almost all aspects of the computer's systems control and instruction
processing are important to some degree in computation and algorithm design. To attempt
an in-depth study of all the instructions offered on 5 or 10 computers would be far
beyond the scope of this treatise. Tne complexity of instruction processing alone would
be a formidable topic. For example, the Fujitsu VP/Amdahl 1200, a computer that has
scalar IBM compatibility, as well as vector processing capability, has 195 scalar
instructions and 83 vector instructions. On the other hand the CRAY-i has only half as
many. Moreover, a machine line like the CRAY X-MP has three separate instruction sets
for three models of X-MP; that is, the instruction set has been altered in successive
models! In this section, the focus will be on the relation between the instruction

processing and vector processing. The specific areas of interest are the following:

ALLOWABLE VECTOR DATA

SCALAR/VECTOR OVERLAP

UNUSUAL INSTRUCTIONS

(Readers interested in complete lists of instructions are referred to vendor manuals
such as hardware reference manuals or technical overview manuals.)

To a mathematician or scientist, a vector is simply an ordered array of numbers. For a
computer this array doesn't exist until it is designated by the memory location of its
ordered components. Various supercomputers have limitations as to the flexibility
allowed for the specification of vectors. There are three common complexities found in
manipulating vectors stored in computer memories, as illustrated by Figure 2-21. The
figure displays the storage of a (dense array) vector A

=
(A, A2, ... , An) in three

different memory configurations. The X' denotes that that siorage location is not used
by the vector data.

17

A :A :A :A :A :A :A :A :A .
1: 2: 3: 4: 5: 6 :7 :8 : 9:

...

Contiguously Stored

:A :X :A :X :A :X :A :X :A : .

1: : 2: : 3: : 4: : 5:

Regularly Stored (Strided Storage)
(Stride of 2)

:A :A :X :X :X :A :X :A : A

1: 2: : : : 3: : 4: 5:

Random

Figure 2-21
Types of Vector Storage

The retrievability of vectors stored by any of the three schemes is a function of
hardware design. Contiguously stored data is the simplest and most natural of the three
storage schemes to implement in hardware. The vector is described by the first
(component) word location in memory and the vector length in words. All the
supercomputers considered here can handle this type of storage. The next level of
complexity is regularly stored vectors. In this case the vector is described by the
first word location, length and the stride (the number of contiguous storage locations
between the components of the vector plus one.) Regularly stored vectors occur
frequently in matrix manipulations. For example, the common way to store two-
dimensional matrices is by columns. That is, each column of the matrix is successively
and contiguously stored in memory. In this case, the row of a column stored matrix of
order N, is a vector that is regularly stored in memory with stride of N. Contiguous
storage is a special case of regular storage with a stride of one. Most of the
supercomputers allow for regular storage. Those that don't are handicapped in certain
situations. The random storage of vector data as indicated in Figure 2-21 clearly
requires a mechanism for describing the location of the desired components. The vector
is usually described by the first word location and an index array holding the relative
memory location (relative to the first word location) of the remaining components. For
the randomly stored vector in Figure 2-21, the first five values of an index array,
INDEX (I), would be

INDEX (1) = 1

INDEX (2) = 2

INDEX (3) = 6

INDEX (4) = 8

INDEX (5) = 9.

The index array is as long as the array of non-zero data. Th! fetching/storing of a
randomly stored vector data to a contiguously stored memory block, via the "mapping"
prescribed by the index array, is often called the "gather" operation. The inverse
operation is called the "scatter" operation. This storage scheme is quite useful when
describing data related to sparse matrix data where the non-zero elements of a vector
are manipulated according to an index array. (See Chapter 3.) Many of the key
differences in supercomputer performance are related to the efficient manipulation of
these three types of vector data. The following table gives a listing of the types of
data supported by each machine. Those machines supporting random vector storage all
support regular and contiguous storage. Those supporting regular storage also support
contiguous storage. ("Support" is taken to mean that the instruction set supports
vector operations with the particular data type.)

38

Allowable Vector Types

COMPUTER ALLOWED VECTOR TYPE

CRAY-1 regular
CRAY*X-MP : regular
new X-MPs : random
CRAY-2 random
CYSER 205 : contiguous
ETA-10 contiguous
FUJ. VP 200 : random
FUJ. VP 400 : random
HIT. S-820 : random
IBM 3090/VF random

+

NEC SX-2 random

The original X-MPs did not allow random storage. The first X-MPs
delivered with random vector storage were the multiple CPU machines
beginning in 1983, later the single CPU machines were all produced
with this feature.

+The 3090/VP allows for this type of data but performance can degrade
due to more frequent cache hits.

TABLE 2-10

The complexity of vector instructions vary from computer to computer. Currently, most
of the supercomputers available require the vector input data to be independent of the
output data. Thus, frequently used loops that involve recurrence are not
"vectorizable". (This latter term refers to the translation of Fortran code into vector
instructions by hand or compiler.) Consequently, the following loop is not
vectorizable.

DO 10 I = 1, N
10 Y(I) = Y(I-1) + X(I)

This is not absolutely necessary. With effort architectures that are basically vector
pipelined in orientation could be enhanced to implement even these loops. There is one
computer that can implement this loop (with some degradation over a non-recurred loop)
with certain restrictions on the "delay" stride. In the above example, the delay stride
is one.) The NEC SX-2 calls the loop above a first order iteration (referring to the
unit delay). Unfortunately, the rate of this loop is only 2 to 4 times faster than
scalar loops, but it is a step in the right direction.

This, in fact, is another first for the Japanese supercomputer community. They were the
first to bring gather/scatter operations to the market, and to our knowledge NEC is the
first to bring first order recurrence to the market. As vector instruction sets are
enriched and enhanced, the flexibility to achieve a higher percentage of the maximum
performance is increased. This also increases the complexity of software development,
particularly for a multiple vendor environment.

Current trends in computer design are moving toward parallelism. One could predict,
however, that if there is another instruction breakthrough in the single vector CPU, it
would be to allow certain types of recurrence, (e.g. constant delay recurrence with
restrictions on the delay range.)

There are many types of vector instructions, but generally they can be divided into the
following categories:

1. DYADIC VECTOR OPERATIONS: *, +, /

2. TRIADIC VECTOR OPERATIONS: e.g. SAXPY

3. LOGICAL/MASK VECTOR OPERATIONS

4. VECTOR TO SCALAR: collapsed sums
min/max of a vector
multiply accumulate

5. LOAD/STORE

6. GATHER/SCATTER

7. BIT/SHIFT MANIPULATION

8. FIRST ORDER RECURRENCE

When a computer doesn't have a certain type of vector operation in its instruction set,
it can degrade performance. For example, the SAXPY is a simple triad operation.
Without it, a computer may have to resort to two dyad operations, thereby cutting
performance asymptotically by a factor of two. In the case of a computer that can chain
or link the result of a dyadic process directly into the next pipeline input, the
degradation is confined to increased startup time, while doubling the asymptotic rate.
Another example of the impact of instruction processing is the introduction of new types
of vector processes. For example, if a computer cannot process vector gather/scatter
operations, the process would have to be carried out using scalar instructions at a
pronounced reduction in performance--limited by the speed of scalar instruction
processing rather than asymptotic pipeline rates.

One type of operation in the above list is worthy of further discussion, masked
operations. Most of the supercomputers available provide for bit-control vectors.
These are logical vectors whose components are single bits which are either one or zero
(i.e. on or off, true or false.) They can be generated by vector logical compare
operations and can be used to take action according to the logical bit. For example, on
a CYBER 205 one could perform a vector addition according to a bit control vector such
that the result is suppressed if the corresponding bit is false. It should be
emphasized that such operations are not done any faster than if all the operations were
being performed. For this reason, the use of masks and bit control vectors is rare in,
say, the manipulation of very sparse vectors. They are more effective for "almost
dense" operations, i.e., those that have few exceptions, or in operations involving
merging of vector data according to some rule.

The following table lists the categories of operations supported by various computer
types. An "X" indicates the category is supported at maximum vector rate. An "R"
indicates the feature is supported in vector mode, but at a vector rate significantly
slower than the peak vector rate for a dense operation. A "-" indicates the operation
is not supported by the vector instruction set.

Vector Instructions by Category

DYADS (WITH STRIDE)
TRIADS (WITH STRIDE)

MASKED VECTOR
VECTOR TO SCALAR

LOAD/STORE (WITH STRIDE)
GATHER/SCATTER (RANDOM)

BIT/SHIFT MANIPULATION
ist ORDER RECURRENCE

COMPUTER 1 2 3 4 5 6 7 8

CRAY-1 X - X R X - - -

CRAYX-MP X X X - X - - -
new X-MPs: X X X - X X - -

CRAY-2 X - X - X R - -

CYBER 205 R R X R X R - -
ETA-10 X X X R R R R -
FUJ. VP 200 X X X X X X X -
FUJ. VP 400: X X X X X X X -
HIT. S-820 X X X X X X X -
IBM 3090/VF: X X X X X R X -
NEC SX-2 X X X X X X X R

TABLE 2-11

A final topic, related to control and instruction processing, is the relationship
between the processing of scalar and vector operations. The most restrictive form of
instruction processing is to process only one instruction at a time. This is not
unusual on scalar machines. On vector computers, however, while a long-vectcr operation
is executing, a considerable amount of scalar instruction processing could take place,
ignoring possible memory conflicts. It is also very common to have a number of vector
instructions linked together so that at any one time a number of vector instructions are
in simultaneous execution. Instruction overlap, of this kind, is easier to achieve on
some machines than others. The variations are dependent on each instruction as well as
the architecture. For example, on a CRAY series computer scalar floating point
operations and vector floating point operations use the same functional units;
therefore, they cannot be overlapped. In contrast, the NEC SX-2 provides separate
scalar and vector units, and as long as data contention is avoided, scalar and vector
operations can proceed in an overlapped fashion.

40

Instruction Processing

o Computers that manipulate "vectors" deal with restrictive definitions of
mathematical vectors. These vectors are defined by memory storage
characteristics that can vary from machine to machine. The three main types
of vector storage are listed below. (Note: each is a subset of its
successor.)

- contiguously stored (first word location and length)
- regularly stored (first word location, length, and stride)
- randomly stored (first word location, index or pointer array)

o One common rule pervades vector operations: the input vectors must be
independent of the output vector. Exceptions are beginning to appear in
computer designs (e.g. NEC SX-2), but the principle remains fundamental in
high performance algorithm design.

o Support of categories of vector operations varies among supercomputers. It is
important not only to know whether an instruction type is supported, but if it
operates at maximum rates or not.

Secondary Storage

Figure 2-12 displays a storage medium between main memory and conventional disks. This
device is secondary storage and is employed by several supercomputer manufacturers to
both improve performance and reduce the price of large memory systems. what has become
a glaring problem is the inability of conventional disk technology to keep pace with the
rapid growth in computational power and central memory of modern computers. The
industry has witnessed almost geometrical growth in computing power over the past
several decades, with little sign of abatement. The growth in disk technology with
respect to speed of access and capacity, has been more arithmetic in nature. The
growing disparity between what we can compute and the availability of storage to hold
the results has become a major computing issue.

The basic fact is that only disks can permanently hold problem input and the resulting
output data. Unfortunately, modern scientific computations often generate much greater
amounts of intermediate calculations which typically must reside in memory. When
available memory fills, a number of alternatives exist for moving data in and out of
inadequately sized memory. A common scheme in conventional computing for management of
this data is virtual memory. With VM, the operating system has the task of "paging"
data in and out of memory to a disk or other storage device. A more common method among
supercomputers is to have the user manage the data movement directly with I/O
instructions accessible in the Fortran language. As the disk storage characteristics
have become so inadequate relative to computing power and main memory speeds, the need
for an intermediary storage device becomes apparent.

As an example, the CRAY X-MP system can include a Solid-state Storage (SSD). Its
characteristics are quite impressive relative to disk technology. At the time of its
introduction, the SSD single word access time was ten times faster than disk technology,
but with a bandwidth improvement of over 250 times that of conventional disk, for large
amounts of data. The speed of the SSD is almost that of single ported memory for large
amounts of data. As a storage medium, secondary storage lacks a basic feature,
permanence. Secondary storage is volatile memory, and cannot be used to store data
permanently. The advantages main memory has (on an X-MP) is 3-paths and less initial
fetch overhead. In Chapter 3, examples will be given of how SSD-like devices can improve
performance.

Table 2-12 lists supercomputers that employ some form of secondary storage to improve
throughput. The table lists the size of secondary storage in 64-bit words, the memory
bandwidth and secondary storage bandwidth. Also included in the table is an entry
related to disk striping, the ability to utilize parallel~sm in I/O to conventional
disk. Disk striping is nothing more than using parallel channels to send a file to
multiple disks simultaneously. This is accomplished at the operating system level where
the data is split in a systematic fashion and sent to multiple disks (a sort of striping
of the data occurs, where each stripe is assigned to a disk and can be recovered in a
similar fashion.) The advantage is a simple bandwidth improvement proportionate to the
number of disks involved in the striping. For example, the NEC SX-2 allows 32-way
striping. This in turn can improve I/O by a factor of 32 for large amounts of data.

41

Use of Secondary Storage

SECONDARY DISK MEMORY 2ND MEM.
STORAGE STRIPING BANDWIDTH BANDWIDTH

COMPUTER

CRAY X-MP : 512 MW yes 352 MW/SEC/CPU 125 MW/CHANNEL
CRAY-2 : none yes 750 MW/SEC/CPU N/A
ETA-10/E 256 MW(main) yes 285 MWISEC/CPU 95 MW/SEC/CPU
FUJITSU : none yes 533 MW/SEC N/A
HIT. S-810: 384 MW yes 286 MW/SEC 125 MW/SEC
IBM 3090 : 64 MW yes N/A 162 MW/SEC
NEC SX-2 256 MW yes 1300 MW/SEC 162 MW/SEC

TABLE 2-12

The growth in main memory sizes poses some interesting design questions. Does a
computer manufacturer strive for massive memories and/or a tiered memory structure.
From the view point of the functional units, memory is already quite structured. Memory
options include the following:

Volatile storage-

Registers
Cache
Central Memory
Secondary Storage
Tertiary Storage (not very common)

Permanent -

Disks (striped and regular)
Tapes
Massive Storage media

It is typical for a device higher on the list than a lower device to have faster access
times for single pieces of data, greater bandwidth, and lessor size (in terms of words).
These devices can be viewed as the palette and the architect the artist. In the design
of computers, all or some of these devices can be employed in the development of the
memory hierarchy. A very current example of the dilemma of design of memory is depicted
by the interesting differences offered by Cray Research. As of this writing, the CRAY-2
is the largest single main memory computer available. When the first CRAY-2 was
delivered in 1986, it represented more main memory than all the Cray computers delivered
prior, combined. Such an astronomical change in computer balance, can redefine the
computational process. The CRAY-2 has no secondary storage option -- simply huge
memory. Which design (SSD or large main memory) is better? The question is moot. A
better question is for which computer design will more applications be productive.
Today at NASA Ames for example, there are jobs that run slower on the CRAY-2 than the X-
MP. At the same time, there are models being run on the CRAY-2, that cannot be
attempted on the X-MP because of memory limitations (even with a large SSD).

Supercomputer power is a balance of speed and memory. The formula for a successful
combination is not known and, at best, is problem dependent. The success of a computer
design is measured by its economic usefulness in computation. Radically new designs
demand radically new approaches to computation. The CRAY-2 is very much an experiment
in a new balance in computing speed and memory. Even with a full complement of disks,
the CRAY-2's memory cannot be "emptied" to disk in the same time frame as a regular
supercomputer. Consider the operating system changes that must be considered. Job
swapping, virtual memory, the disk relation to main memory, algorithmic approaches to
problem decomposition all need redefinition. The impact of such a massive increase in
memory, must be accommodated over the entire spectrum, from operating system to user
model.

This discussion would not be complete without noting another aspect of I/O -- channel
speeds. In large application programs permanent output data is being gradually replaced
by a graphical display medium which is perhaps interfaced to the computer by another
CPU. This approach is putting an ever greater demand on supercomputer's channel speeds.
Table 2-13 shows that supercomputers can differ in this important throughput
characteristic. The greater the channel speed, the greater the flexibility in
"integrating" a supercomputer into a usable and productive system. There are those who
consider channel speed as important as computational speed and memory size when rating
computer "power".

42

Supercouter Channel Speeds

COMPUTER CHANNEL SPEED (/sec)

CRAY X-MP 224 Mbytes
CRAY-2 4000 Mbytes
ETA-10/E 250 Mbytes
FUJITSU 96 Mbytes
HIT. S-810: 96 Mbytes
IBM 3090 96 Mbytes
NEC SX-2 96 Mbytes

TABLE 2-13

2.2.4 The Use of Multiple CPUs in Supercomputer Design

The trend to increase the computational power of Supercomputers through replication of
CPUs, is well established. CRI, IBM, and ETA Systems offer multiple CPU machines. The
initial foray into this arena has been largely motivated by job stream throughput
considerations. Two or four CPUs, at best, can only increase performance by a factor of
two or four respectively. This can only be accomplished through some modifications to
the application at hand, usually by the user. This requires time and effort. On the
other hand, providing two CPUs, in proper coordination through the operating system, can
easily, and without user intervention, nearly double the throughput of a system. For
this purpose, IBM and its plug compatible competitors have been offering multiple CPU
mainframes for some time in scalar comouters. The trend in supercomputing, however, is
now proceeding toward 8 or 16 CPUs. Cray Research will be offering 8 and 16 CPU
machines on the X-MP, the Y-MP, and/or the CRAY-3 by 1987/8. Several trade journals
have predicted 8 CPU 3090s in the future as well. When the number of CPUs exceeds 4,
the gains from improving throughput begin to wane. Eight job streams would tend to
randomly compete for critical resources such as memory and 1/O ports to the detriment of
performance. To effectively use higher degrees of parallelism, the power of multiple
CPUs has to be brought to bear on a single job. In order for this to take place the
application program must be redesigned, and the operating system has to provide the
mechanisms for higher level languages (such as Fortran) to create and coordinate tasks
within a single job. Through this coordination (synchronization) the programmer can
perhaps eliminate random contention and create much greater "job" throughput. Ideally,
if N processors are brought to bear on a single job, a performance improvement of a
factor of N in real time is attained. Invariably, not all the contention for resources
can be eliminated. In addition, the CPU coordination itself introduces overhead that
can degrade potential performance. Software performance issues of this kind will be
discussed in Chapter 3. In this section, different hardware philosophies of parallelism
being employed by the three vendors mentioned will be briefly discussed.

Among the three vendors alluded to above, Cray Research was the first to offer a
multiple CPU system with software to support the synchronization and coordination of
these CPUs within a single job. (CRI has called this process multitasking. In addition,
CRI provides other more elemental tools for coordination and synchronization which they
have chosen to call microtasking. While these terms are specific, the community seems
to be adopting the term "multitasking" as a vendor generic term. In this treatise we
will use the term in the generic sense unless otherwise indicated. See "multitasking"
in the glossary for more elaboration.) The software aspects of multitasking will not be
discussed in this section, rather an overview of the design will be described.

The first multiple CPU machine from CRI was the CRAY X-MP. The simplest form and
structure for parallelism was employed. Figure 2-22 gives a conceptual overview of this
structure which applies to the CRAY X-MP and the CRAY-2 as well. The key feature is
that the CPUs share (and thus contend for) main memory. Each CPU is autonomous in terms
of operation. Thus, with the proper software true MIMD processing can be implemented.
When one or more CPUs require data they must share access to memory with a
hardware/operating system convention for breaking ties. A nunber of anomalies can occur
with regards to memory bank and memory section conflicts. (For a complete treatise on
this subject for the X-MP see (2-12].) The nature of the conflicts extend beyond the
simple contention for identical data because of the bank organization of the CRAY
computers. Each time a bank is accessed there is delay time cequired before it can be
accessed again. Any attempt to access the bank before the wait time has elapsed will
cause a suspension of activity. The greater the wait time in the hardware design, the
greater the penalty. Thus, a good program design must account for data distribution in
memory across banks, as well as analytical contention for identical data. Table 2-7, in
Section 2.2 gives the bank wait times in cycles. Pi.bably the most notable wait time is
with the CRAY-2, where even though it has a large number of banks, the over 50-cycle
wait time can become a problem with only one CPU, let alone four.

43

(vector) (vector

Main

Mulipl C memory erh p
(vector) (vector)

Billions
of 64-bit
words

F (vectr) (vctor)

(vector) (VOC"m Secondery
mass

Figure 2-22
Multiple CPUs - Cray Research Approach

The description of a single CPU for an X-MP or a CRAY-2 (that was presented in the
previous section) applies to multiple CPU systems. The only significant addition in the

multiple CPU case is a description of CPU coordination registers. This feature allows
true MIMD processing. Each CPU has semiphore register for communication among the CPUs.
Thus, a CPU can be directed to take actions based on the status of the semiphore bits
available to all CPUs. In this fashion, coordination of CPUs can be achieved. CRI has
utilized this feature to enhance Fortran with multitasking capabilities through
operating systems routines and also to support "microtasking" compiler directives.
These techniques will be briefly discussed in Chapter 3.

In contrast to the CRI approach, ETA Systems has adopted a different approach. Figure
2-23 gives a conceptual overview of their machine. The striking difference is the use
of memory. Currently, each CPU has 4 MW of memory. The central main memory, from the
frame of reference of a single CPU, is much like secondary storage on an X-MP. In fact,
the bandwidth from a single CPU is roughly the same as the bandwidth from an X-MP to its
secondary storage device. In addition, the design provides for inter-CPU communication
through a million word buffer. Thus, in the extreme cases, this design trades memory
contention of the CRAY design for communication contention among the CPUs. That is, if
one CPU needs to compute data generated by one or more of the other CPUs, a
communication overhead is incurred.

Control Processor
CPU CPU

(Vector) (Vector)

4 MW Main 4mw

CPU Memory cPU
(Vector) (Vctor)

4 MW Billions 4 MW
of Words
(64-Bit)

(Vector) (etr

(Vector) (Vector) Secondary

4 MW 4 MW Mass
A Storage

Figure 2-23
Multiple CPUs - ETA Systems Approach

.. k - , ,. - . - - - - - &

44

The IBM six-CPU machine is the 3090/600. The most powerful version would have a Vector
Facility (VF) with each CPU. While the interface of the CPUs to main memory is a bit
m'ore complex than the CRAY series of designs, it basically employs the same philosophy
of the CRAY X-MP. It is quite conceivable that there are many parallel computational
schemes for algorithm or application design that would produce efficient use of both the
CRAY and IBM architectures. In another words, the possibility of transportable parallel
programs between the :790/400 and CRAY X-MP series is not out of the realm of
possibility. This would be more difficult for an ETA Systems machine.

**tftftf **f t IMP ORTANT'l CONCEPTS *
Multiple CPUs

" Supercomputer designs are moving toward relative . small degrees of
parallelism with each CPU being a pipelined powerful machine in its own right.

o Various scenarios will appear

- shared memory, perhaps tiered (this can cause memory contention among
CPUs)

- distributed 7emory, perhaps tiered (this can cause communication overhead
among CPUs)

2.3 EMERGING TECHNOLOGIES

2.3.1 Introduction and Intent

It is the purpose of this treatise to discuss the current generation of supercomputers
and their relation to computational fluid dynamics. The question often arises as to
what is next. Vendors are often very closed mouthed about new products. In the
supercomputer arena, however, the nature of new products is not just kept secret, it is
a basic research topic on which company survival is built. The ideas for new
architectures and underlying chip technologies are obtained by vendors from many
sources. In order to anticipate tomorrows designs it is often fruitful to look at
today's mid-range computing trends and research projects in academic computing
environments. To survey parallel computing architectures or even the new mid-range
supercomputers (near-supercomputers) is a formidable task, indeed. Currently, there are
over 20 vendors in the market with some form of parallel and/or vector computer in the
minicomputer class price range, and over 50 companies with designs seeking funding to
bring products to market. The likelihood that more than 5 or 6 companies will survive,
over the long term, is small. In addition, the traditional minicomputer companies such
as Digital Equipment are one by one entering this high performance, low cost scientific
computer market with parallel/vector architectures. In this concluding section to
Chapter 2, we will briefly describe the various forms of parallel architectures
available today, and examine (using the CPU model in Figure 2-12) several
minisupercomputers, namely, ALLIANT, CONVEX, FPS 164/264, and SCS-40.

2.3.2 Parallel Systems

A complete taxonomy of parallel architectures will be avoided. Nevertheless, it is
worthwhile to examine several classes of parallel architectures, recognizing that many
machines are combinations of attributes from several classes. Probably the most basic
distinction to be made is "shared" vs. "distributed" memory systems. This distinction
has already found its way into supercomputer design. As mentioned earlier the CRI
multiple CPU machines are basically a shared memory systems, wherein each CPU has equal
access to, and hence contends with other CPUs, for main memory. The ETA Systems GF-10,
on the other hand, distributes primary memory offering a shared secondary memory. (See
FiguLes 2-22 and 2-23.) The two approaches are fundamentally different.

In the smaller machine market, the CPUs themselves don't have the power of a
supercomputer CPU. Quite often the manufacturers provide a greater number of CPUs
which, in the shared memory case, contend for access to main memory through a high speed
bus, switching network, and/ or layered caches. Table 2-14 is a sample of shared memory
machines. Unfortunately, many machines defy classification by combining features of
several basic designs. For example, some of the shared memory machines also allow CPUs
with local memory. The decision to classify them as shared versus distributed is
somewhat arbitrary.

SA-

Shared mory Machines

Company - Machine No. CPUs Communication Type Memory

Alliant - FX Series 1-8 cache shared
BBN - Butterfly 2-256 switched net shared/local
Concurrent 3280 1-6 bus shared
Elxsi 1-12 bus shared/cache
Encore 2-20 bus shared/local
Flexible 1-20480 bus shared/local
FPS/164-MAX 4-16 bus shared
Masscomp 5700 1-4 bus shared
Sequent - Balance 2-30 bus shared

TABLE 2-14

In distributed memory systems each CPU has its own memory. In turn these CPUs are
linked by a variety of connection schemes. The CPUs can be ringed, linear, latticed or
connected in a variety of ways. Ringed or clustering of CPUs seems to be a popular
approach to utilizing more powerful CPUs with substantial memory. Typically one finds
that the more powerful the individual CPUs, the smaller the implemented degree of
parallelism. It also follows that the fewer the number of CPUs, the less oophisticated
the connection scheme. The most popular distributed architecture from a commercial
point of view is the hypercube architecture. (For a description of hypercube
drchitecture, see the glossary.) There are already five commercial companies in the
market place with hypercube machines.

The most amazing aspecL "' commercially available hypercubes, is the variety of
approaches. These differences are so great that the entire approach to algorithm design
for effective utilization of the hardware can change character among machines in this
single class. For example, the maximum number of CPUs available from a given vendor,
range from 128 to 64000. The computational power of each vendor's single CPU ranges
from bit oriented processors (the Connection Machine) to full floating p~int 20
MFLOPS/CPU. As indicated earlier, the more power the CPU, the fewer the number of CPUs
available. In addition, there are very big differences in memory sizes and
communication speeds between CPUs. If one, for example, has a Floating Point Syste T-
Series hypercube with 16 CPUs, one's approach to computation would be consideranly
different than for the 64000-CPU Connection Machine. In the latter case, one could view
the machine as one big semi-programmable memory (in the spirit of an associative
processor).

In any distributed processor design, certain key parameters dictate the nature of
software design. The parameters become the menu for the architect in an exercise of
compromise. Table 2-15 lists some important considerations. While this is not meant to
be a comprehensive discussion of parallel architectures or of issues in their design, it
is instructive to examine the various differences observed in commercially available
machines. This is given in Table 2-16. It is interesting to point out that the largest
number of CPUs is available in the Connection Machine where individual CPU power is the
lowest. It is also worth mentioning, that the next model of the Connection Machine will
have more computational power by introducing a computational floating point chip to be
shared by every 32 CPUs. One can imagine no end to the variety possible in the world of
parallel designs!

Parameters in a Distributed Environment

Parameter Considerations

CPUs The number of CPUs
The computational power
Internal I/O overhead

Memory The size of individual memory
The availability/addressability

of secondary memory or other
processors' memory

Network The connection scheme (full or
partial: e.g., ring, cube, clusters)

Shared or switched busses

Bandwidth Communication rates between
CPUs (near and far neighbors)

Control Instruction processes and
timings (broadcast and local)

Synchronization primitives

TABLE 2-15

ANI

46

Hypercubes

Local CPU power Bandwidth
Manufacturer No. CPUs Memory (bytes) (Mflops) (Mbytes/sec)
..
FPS T-Series 8-16384 1000K 15.0 7.5
Intel iPSC 16-128 512K 3.1 10
NCube 4-1024 128K 0.3 180
The Connection 16K-64K 0.5K 10**(-3)

TABLE 2-16

It would be remiss to exclude from the discussion a listing of distributed memory
systems not in a hypercube configuration. For example, there are systems that have
networks in nets or mesh configurations. These may have direct applicability to CFD
algorithms and other partial differential equation problems. Like hypercubes, s,,ch
machines are quite varied in approach, CPU power, and memory. Again, Table 2-17 lists a
sample of machines in this category. The three machines are very different. The Cyber
Plus is a ring connected set of up to 16 CPUs with several data memories and an
instruction memory. Up to 16 rings can be connected to a Cyber 800 host. Each of the
CPUs can operate independently, each has a 20 nanosecond clock cycle. Since the main
data memories can have as much as a half a million 64-bit words, each single CPU is a
rather substantial machine. The ICL DAP, on the other hand, is a SIMD CPU device with
up to 4096 CPUs arranged in a lattice or mesh. The Goodyear MPP has bit serial cLUs in
a lattice or mesh structure with edge closure (i.e. the mesh edges, left and right, top
and bottom are nearest neighbors.)

Distributed Memory Systems

Company - Machine Nc' r'Us Ccr..unication Type

CDC Zyhcr Plus 1-16 ring
Goodyear MPP 16K mesh
ICL DAP 32*32 or 64*64 mesh

TABLE 2-17

The intent of this all-to-brief survey of parallel processors is to give the reader an
idea of possible directions that supercomputer manufacturers may take with future
designs involving multiple CPUs. Cray Research and ETA Systems are already implementing
different, yet simple, forms of parallelism. Academic institutions, government
laboratories, and some large established computer companies (e.g. IBM) have prototypical
parallel machines which we have not covered, but they all share some of the ideas of
designs presented.

IMPORTANT CONCEPTS

Parallel Systems

" It is common to see new machines with parallel CPUs. Typically the more
powerful the individual CPU, the fewer there are available in the design.

o A popular commercially available ar'hitecture is the hypercube. Three
characteristics of distributed memory machines that determine performance and
algorithm design are: the computational power of individual CPUs, the
bandwidth between CPUs, and the *emory capacity at each node. The smaller
hypercubes are message passing systems, and the overhead of sending a message
also becomes important in algorithm design considerations.

o As the number of CPUs increases, the nature of algorithm design is
dramatically affected.

2.3.3 inisuperccuputers: A Market Perspective

Thus far the topic of "minisupercomputers" has been avoided. The term minisupercomputer
is defined in the glossary, Appendix A. The definition is given in terms of a
performance gap between supercomputers themselves and popular minicomputers. In the
next section, the four leading competitors in this price performance "gap" region will
be discussed. They are the Alliant FX-8, Convex C-l, Floating Point Systems FPS-264,
and Scientific Computer Systems SCS-40. These machines are all very different in their
design, but share attributes of computers already discussed. Before discussing these
machines, it is worthy to discuss the minisupercomputer phenomenon in non-technical
terms from a market perspective.

AW- .-

47

It is generally acknowledged that currently the market for supercomputing has grown
tremendously. Some of the supercomputer vendors are enjoying moderate to excellent
success in the market place. However, it is generally conceded by most observers that
the supercomputer market is a fragile one from an economic perspective. To complicate
the picture a number of new and emerging computer vendors are bringing a wide variety of
products into the marketplace. There are claims of devices being "supercomputers on a
desk", "personal supercomputers", "graphics supercomputers", and "poor-man's
supercomputers". Recently, an article in one of the trade journals claimed that a large
aerospace company was replacing their supercomputer with a number or these new devices.
(It was later denied as ridiculous by the named company.) This relative confusion as to
the role of these new "minisupercomputers" can create havoc in this already "fragile"
industry.

The Setting

Minisupercomputers are both a technical and marketing phenomenci. They are more easily
described in terms of what attributes they have relative to the more traditional
machines in the market. We confine our discussion to the engincering and scientific
computing marketplace, since this is where the "action" is relative to these machines.
We will begin with the following definition from the Glossary.

SUPERCOMPUTER(S): The class of general purpose computers that are both
the fastest available commercial machines AND have sufficient central
memory to store the problem sets for which they are designed. The issue
of "computer power" in large-scale scientific processing is a complex
topic. Computer memory, throughput, computational rates, and a host of
related computer attributes contribute to performance. Consequently, a
quantitative measure of computer power does not exist, and a precise
definition of supercomputers is difficult.

From a technical point of view, supercomputers combine breakthroughs in architectural
design, chip technology and/or packaging to achieve very significant improvement in
performance. In order to do this, supercomputer companies must remain on the very
fringe of research and technology. Often prototypes of early machines attempt new
approaches to circuit cooling and packaging. The newest models often have immature
software systems due to the inability of the architect to be both innovative and
compatible to previous models. These companies must put a tremendous amount of
investment in research and experimentation. The result, if successful, is a machine
that is so fast that the expense is more that recovered in speed. This invariably
results in a price/performance breakthrough.

From a market perspective, the supercomputer is a bit of a miracle. By their very
nature supercomputers are so expensive that only very large companies and/or
organizations can afford to purchase one. In other words, price performance is only an
advantage to those who can afford to "buy-in". Furthermore, being able to afford such a
machine alone is rarely enough incentive to purchase such a device. Most supercomputer
owners have another attribute. They have problems that cannot be solved on conventional
machines. It is not simply a matter of quicker turn around. These companies have users
who are typically advancing the state of science and leading the way toward improved
product designs (e.g. aerospace industry) or improved processes (e.g. petrochemical
industry).

The computer market seems to operate under an economic law that is difficult to make
precise. We will give it a name, and try to define it below:

THE LAW OF PRICE/PERFORMANCE CONTINUUM: The computer market tends to
push for new levels of price performance. Once a new level of
price/performance is achieved, economic realities tend to fill in a
continuum of product choices. Portions of the market are willing to pay
for high performance (small volume business) and others want less
performance for a smaller price (higher volume business).

Historical Examples

For years large mainframe computers competed on a performance basis. Every few years,
largely through improved chip performance, more powerful machines came to the market
with the same or even smaller price. As the performance improved, a gap appeared at the
lower performance end of the spectrum. It was recognized that by relaxing performance,
cheaper air-cooled machines could be made easily with mass-produced chip technology.
They had all the functionality of the high-end machines at equal or better
price/performance. This gave birth to the minicomputer industry.

The process repeated itself more recently. As the minicomputer industry chased the high
end, a new gap opened. This was filled by the microprocessor, and the personal computer
revolution struck with astounding results.

In the above examples, one important aspect has been ignored -- software. In all
instances, the gap fillers were not truly successful until they came to the market WITH

48

usable software systems. For the minicomputers, they not only were able to run
mainframe software, but provided software capabilities in terms of interictive computing
and graphics that their "big brothers" had not accommodated. Similarly, the
microprocessors brought word processing, spread sheets, and similar capabilities that
helped define a "reason" for the new price/performance niche beyond simple economics.

The Minisupercomputer Phenomenon

With the above as background, one can see that the minisupercomputer phenomenon is lest
a phenomenon and more the natural course of economic evolution in the computer .1dustry.
It begins with a new and substantial breakthrough in high-end performance (a , well as
price performance). After suitable moratorium period, required to let this market
mature with customers and software, the gap is formed. Based on unprecedented growth of
successful supercomputer company(ies), even during sluggish economic growth in the
computer indust:y, ' well-defined customer set with high performarce requirements
emerged. A multi-billion dollar market is, in fact, suspected.

The market approach, to fill the gap between supers and minis, almost defined itself.
Clearly, one could not continue to push chip technology and gain the kind of
price/performance supercomputers have achieved. So, simply building a faster mainframe
or minicomputer would not "hack it." Supercomputer manufacturers, in fact, had
achieved the improved price performance through "parallelism" in the form of pipelining
and multiple CPU hardware. The solution was simple: use the chip technology and
manufacturing techniques of minicomputer manufacturers and the computer architectures of
modern supercomputers. The latter architectures employ "vector" hardware and/or
parallel CPUs to achieve better throughput in scientific processing.

The early minisupercomputer manufacturers are working ver hard to achieve software
parity with the supercomputers at the high end and the minisupercomputers at the low
end. If, in fact, they can achieve software stability, they can challenge both ends of
the market for a unique niche. As in the examples above, it is also likely that, in
time, this class of machine will define new software domains. Some predict that
economics and business applications may be amenable to this class of equipment from a
price performance point of view (but currently vector software in this arena is
missing.) Can they drive either end out of business? If history serves, this is not
only unlikely, but counter productive for all concerned, as discussed further below.

The Impact of Minisupercomputers

It would take a very large crystal bail to foresee the total impact of
minisupercomputers. Who would have ever imagined the impact of personal computers on
society. Could Henry Ford have predicted the 8 lane freeway when he built his first
car? One underlying fact seems to pervade this whole discussion. The scientific
community has a fundamental need for more computing power. This seems to be true
throughout the spectrum of computing. More power is required on the desk, in the office,
in the departmental computer center, in the company's data center, and so on.
Productivity would dictate that interaction, editing, quick turn-around, deDugginig runs,
etc., would require a certain amount of intimacy between the user and the computer.
Requirements for larqe aerodynamic design, chemical analysis, structure design, and a
host of various industries' leading modeling challenges, will require the enormity of
computing power available only from pioneers in high-performance processing. It is
likely that new gaps in performance will appear. As we see today's minicomputer
performing computations only mainframes could achieve a few years ago, it is likely we
will see today's supercomputer load easily accomplished on tomorrow's minisupercomputer,
and, if history serves, a new software requirement will be the domain of even more
powerful true high-end supercomputers. At the same time we can observe new workstation
technology, defining new ways for scientists to interact with their models. For
example, rather than computing pressure distributions on a wing to infer lift, today's
aerodynamicist is "watching" the flow color coded for pressure) over the wing through
complex graphical displays.

Historically, new popular "niches" in the computing spectrum have taken-on their own
character. In time minisupercomputers will find their own community of users. It is
clear, however, that these machines will be a bridge between the low end and high end of
the computer industry. The bridging will he through various approaches to
software/system compatibility. For some, the minisupercomputer will be the local
supercomputer. That is, play the role of the mainframe in a smaller company or
organization. For the large system companies, current owners of supercomputers, the
minisupercomputer will fill a different role, that of secondary and off-load
development. Minisupercomputers for this group will perform duties related to graphics,
interactive development, and departmental computing. The four active contenders in this
arena take on their own characteristic flavor in terms of market position. While no
official position is taken by the companies, observation leads one to the following
description:

Alliant - focused on UNIX and parallelism, Alliant has had initial success in the
research community. With this as a base, the company is striving to create its own
community of users with a growing number of application packages. other than UNIX,
no initial thrust was made in compatibility with minisupercomputers or
supercomputers.

.... L -A& .- R d ----- I l

49

Convex - Convex has strong desire to be the compatible upgrade to the VAX
scientific user community. Great effort has been placed in VAX compatibility (with
varying degree of success). A strong program to add application programs positions
itself as a potential stand alone computing engine. Many claims of Cray
compatibility through Fortran have been stated based on the aggressive vectorizing
compiler. The compatibility, however, is based on software development methodology
and has no strong basis in architecture or underlying assembler compatibility.

FPS-264 - Floating Point Systems, Inc., is a well established computing firm. Its
history is based in the array processing field where it has virtually dominated for
years. The FPS-264 is very similar to the companies initial product, with the
addition of true instruction memory supporting Fortran. Many of the remnant
philosophies of an array processor company have plagued FPS's positioning as a
minisupercomputer. Recently, however, the company has made a strong market push

0 for identity as a minisupercomputer. They have a large customer base in providing
add-Qn equipmer.t for VAX owners and are likely to pursue this market in direct
competition with Convex and SCS.

SCS-40 - Scientific Computer Systems, Inc. was founded on the principle of Cray X-
MP compatibility. The SCS-40 faithfully emulates the X-MP assembler instruction
set. As such it can run both X-MP's popular operating systems, COS and CTSS and
most applications software that run on those systems. It is clearly positioned
strongly as a peripheral node to a CRAY X-MP environment. it can be utilized as an
off-line development machine or as the first step toward ownership of an X-MP. The
company is also striving to achieve VAX software compatibility in the sense of
Convex, and thereby, challenge both FPS and Convex in that market.

** * IMPORTANT CONCEPTS *

Minisupercomputers

o As the high end computers stretch the performance spectrum, new
price/performance niches will appear.

o Minisupercomputers are simply another filling-in of a price performance gap
opened by technology at both ends of the computing spectrum. Other examples
include, minicomputers and microcomputers.

o The impact of minisupercomputers is unclear. They no doubt will be integrated
into supercomputer systems environments as well as stand alone as department
computers. They will likely become the home of certain applications that have
not become a part of the supercomputer scene -- perhaps data base and business
applications.

" Minisupercomputers are already opening new technological environments for
supercomputers themselves!

2.3.4 Four Minisupercomputers: Architecture Descriptions

From a computer architecture perspective, the Alliant and FPS-264 are not very similar
to today's supercomputers. They were developed more "from scratch" and have employed
different techniques of design. The Convex C-1 and SCS-40, on the other hand, are
"true" minisupercomputers in that they are based on minicomputer hardware technology and
vector pipelined architecture. The following descriptions of the four machines are
purposefully brief, but serve to illustrate their similarity, or lack thereof, to
supercomputers. Regardless of their architectural compatibility, each of these machines
shares some similar software methodology considerations to true supercomputers. This
will be discussed further in Chapter 3. The table below gives the peak rates and
typical N1 /2 values for a SAXPY operation on the four machines, according to (2-111,
[2-13.

Minisupercomputers: Performance Characteristics

cycle Peak Rate SAXPY
Machine nanosec. (64-bit MFLOPS) MAX RATE N11 2...

Alliant FX-8 (Fortran) 170 94 14 150
Convex C-i (Fortran) 100 20 10 31
FPS 264 (assembler) 54 38 35 12
SCS-40 (Fortran) 45 44 32 72

TABLE 2-18

5("

The Alliant: The Alliant FX-8 has the distinction of having one of the most elegant
vendor supplied hardware diagrams. (See Fig. 2-L4.) It is simple, clear, and of
adequate detail to infer the machines philosophical layout.

Figure 2-24
The Alliant FX-8: Hardware Description

The two major differences between the Alliant and the 5 major supercomputers, are the
use of parallel CPUs and the layered cache interface. While Cray and ETA Systems have
multiple CPUs, Alliant's focus was to exploit the multiple CPUs for computational power
through automatic parallelization through the use of the compiler. The success of this
approach is debatable, and Alliant is currently looking at alternate approaches to
utilizing parallelism, particularly an MIMD approach. The use of the cache interface
has software implications that are not present in non-cache systems. Algorithms must
manage to confine data access within the cache whenever possible. Fig. 2-24 displays
the CPU access to main memory through caches. Each layer of memory requires a longer
delay to access and must be done by cache "uploads" of data. This becomes a real
problem when data access causes a repeated flip-flop of data in and out of cache. Such
a process could create a serious performance bottleneck. The machine compiler exploits
algorithm pipelining, discussed in Section 2.1.5, as well as automatic parallelization
of inner loops. This latter technique is similar to "Cray microtasking" and is a SIMD
approach to parallelism. Thus, in order to achieve the peak performance listed in Table
2-16, one requires long vector operations, in a fashion similar to pipelined
supercomputers. There are no hardware impediments to offering a MIMD capability which
is a likely future direction. The Alliant machine is also an integral part of the
University of Illinois' Cedar Project. In this project, Alliant FX-8s are being
clustered to achieve higher depths of parallelism.

Memory to memory

I 'Registers

One path Vector
Memoryunits

contiguous and (F E
regular plus

random

Figure 2-25
The Convex Interface

A .- +l~ __h --l.,,., u ,..• U l~ - +- + + -

The Convex C-1: The Convex C-I is the first true minisupercomputer from a philosophical
point of view. The architect, Steve Wallach, has been very vocal concerning the
concept. The idea was to marry the minicomputer technology with the reduced instruction
set approach to emulate vector instructions. The result was a vector machine with a
minicomputer price. The machine can be described by the supercomputer model given
earlier in Fig. 2-12. Vector pipelined high performance functional units have been
added to a scalar design. The interface, however, is through a cache and one memory-to-
memory connection. Figure 2-25 gives a conceptual view of this interface.

The most important aspect of a vector computer design is data flow. In any vector
machine an important question is: is there enough bandwidth and paths to support the
necessary data flow? The Convex C-1 boasts of 60 MOPS, counting the load and store
operation. In fact, this translates to 40 MFLOPS doing 32-bit arithmetic. In 64-bit
floating point computation the correct peak rate shown in the Table 2-18, is 20 MFLOPS.
One should always look closer at the data flow to realize other limits of performance.
The bandwidth from memory to cache is 10 megawords (MW)/second (64-bit) served by a
single path. In addition, the bandwidth from main memory to the functional units is 10
MW/sec, provided the data is contiguously stored. The rate of 20 MFLOPS holds for
operations contained in cache and degrades otherwise. To ameliorate the complexity of
this situation Convex has provided a first rate compiler by all accounts. However, the
compiler cannot overcome basic peak rate limitations; rather, it can aspire to attain
them over a broader band of computational algorithms or kernels.

The SCS-40: From an architectural perspective (at the level of detail that we have
pursued), the SCS-40 is an identical copy of the CRAY X-MP. This is achieved with a
high bandwidth internal structure between all functional units, registers, and memory.
Through microcode emulation, exact X-MP instructions are performed. The internal busses
have greater bandwidth relative to the computational power of the CPU than the X-MP.
Unlike the Convex C-1, the SCS-40 does not appear to be a scalar minicomputer with
vector capability added. It rather looks like a machine designed to be both a fast
scalar and fast vector machine employing minicomputer chip technology for competitive
pricing. The machine can fully support its peak performance claim of 44 MFLOPS, i.e.
there is no internal bandwidth or cache limitation as with the IBM 3090 or Convex C-1.
While its peak vector rate is 25% of that of the X-MP, its scalar rate is somewhat
faster than that. This is in sharp contrast to say the CYBER 200 series whose scalar
performance was never well balanced relative to its vector speed. The CYBERs were first
designed to be vector machines and later scalar performance became an issue. Hanon
Potash, the SCS architect, has often claimed that the key to designing a vector machine
is to "super-impose" a scalar design and vector design to achieve the internal bandwidth
to support both computing philosophies. This has the advantage of eliminating data flow
bottlenecks by design. In fact, in a recent benchmark using the Argonne Labs test
cases, Dongarra [2-11], this machine achieved 41 MFLOPS, or 93% of peak performance
rate.

The FPS-264: This attached processor is a very interesting machine from an
architectural point of view. In this treatise we have avoided a rigid classification
scheme for these modern computers. Yet, the FPS-164/264 eludes any classification
scheme. It is simply different. It exploits a form of parallelism that is similar to
the parallelism between CPU and I/O in most conventional computers. That is, the
machine is really a series of functional units that can be executed in parallel. Figure
2-26 displays the architecture of the FPS 264 in slightly more detail than we have used
for other machines.

PROGAM TNLE DATA DATA MAIN IEOT
MEORAM TAMOLY PAD PAD DATA

E, CR MEMORY

SA
Y

)I BIT DATAL'"AST

Th PAS16/

MI M2
At A2

STAGE , rI.G STAGE I
"rLOATIC f-LOATS

STAGE MLILE STAGE 2 ADE

STAGE)3

Figure 2-26
The FPS 164/264

All..- L-

N Y--'-
I-W

52

The most significant difference in the machine is the ability to process instructions
for the various units simultaneously. The instruction word is large enough to
accommnodate as many as 13 simultaneous instructions issued in a single cycle. While the
add and multiply units are pipelined (2 and 3 segments respectively), the machine
achieves impressive performance on many computational loops largely through this
parallelism of functional units. For example, on sparse matrix loops which have one
level of indirect addressing, the 264 can achieve upwards of 12 MFLOPS. This is, in
fact, as fast as the original model of X-t4Ps coded optimally. In more conventional
dense loops the machine has relatively short startup times when programmed in assembler.
In essence the program instruction is based on the concept of algorithm pipelining as
described in Section 2.1.5. The functional units can be thought of as independent
processing units with special capabilities. Once a repetitive process is decomposed
intc a series of sequential operations of the processing units, then a pipelined series
of operation can be achieved with all units operating simultaneously.

I1MORTANT CONCEPrS
Minisupercomputers

o The four minisupercomputers discussed are very different in their ipprach to
performance and architecture

o The Alliant FX Series exploits field upgradable parallelism up to 8 Cpus. with
automatic parallelization via the compiler

o The Convex has added vector capability to more traditional minicomputer design
via a cache interface. While this is similar to what IBM subsequently did
with the 3090/Vo, Convex has been much more aggressive in software and
compiler technology.

a The FPS-164/264 exploits a high degree of parallelism in functional units
within the CPU. This is supported by the unique feature of allowing as many
as 13 simultaneous assembler instructions in one cycle.

o The SCS-40 approach is to improve on what works. By faithfully emulating the
industry leader, CRAY. They have implemented an X-MP CpU with the
price/performance advantages of minicomputer technology.

2.4 CHAPTER 2 SUMMARY

In this chapter, a survey of issues related to high performance hardware has been
attempted. The ever present push for computational power seems evident in most
technology based industries. No signs that this appetite for more computer power will
be satiated in the near future, we have attempted to give an overview of today's
supercomputers with knowledge that new designs are just around the corner. The brief
descriptions and inclusion of parallel computers and minisupercomputers has been offered
to help the reader be better able to assimilate new designs. The supercomputer designs
of tomorrows machines lean heavily on what has been experienced by these somewhat
lesser performing machines.

Somehow the half dozen supercomputer manufacturers have evolved surprisingly similar
architectures, yet the underlying hip technology and subtleties of data flow differ
greatly. Whatever their similarity is today, it promises to be less in the future as
the increased use of parallel CPUs takes hold. In the next chapters we will explore the
software ramifications of these differences in supercomputer design.

2.5 REFERENCES FOR CHAPTER 2

(2-1] K. Wilson, "Science. Industry, and the New Japanese Challenge,"Nigh-Speed
Computation, ed. J. Kowalik, NATO ASI Series, Springer-Verlag, June 1983.

[2-2] A. Jameson, Science, Engineering and the CRAY-i, April 5-7, 1982, reported in
CRAY CHANNELS Vol. 4, No. 2, 1982.

[2-3] L. Lemmermn, Aerospace Representative, Cray Research, Private Communicaton.

[2-4] R. ockney and C. Jesshope, Parallel Computers, Adam ilger LTD, Bristol, 1981,

(2-5] C. Ramamoorthy and N. Li, "Pipeline Architecture", Computing Surveys, Vol. 9,
1977, pp 61-102.

(2-6] M. Flynn, 'Some Computer Organizations and their Effectiveness", IEEE
Transactions on Computation. Vol. C-21, pp, 948-60.

(2-7] Alliant Product Summar, Alliant Computer Company, 1987.

AIL- C E 4N 1

[2-8] K. Neves , "Mathematical Libraries for Vector Computers," Computer Physics
Communications, Vol. 26, 1982, pp 303-310.

[2-9] I. Y. Bucher, "The Computational Speed of Supercomputers," Proceedings of
SIGMETRICS, 1983.

[2-10] J. Dongarra, J. Bunch, C. Moler, and G. Stewart, LINPACK Users' Guide, SIAM
Publications, Pniladelphia, 1979.

12-11] J. Dongarra, Lecture Notes, San Diego Education Seminar, KMPS-TV, March 4, 1987.

(2-12] W. Oed and 0. Lange, "On the Effective Bandwidth of Interleaved Memories i.
Vector Processor Systems," IEEE Trans. Comp., C-34, 1985, pp. 949-957.

12-13] J. Kowalik, ed, Parallel MIMD Computation: HEP Supercomputer and Its
Applications, MIT Press, Cambridge, 1985.

(2-14] R. Grimes and H. Simon, "Dynamics Analysis with the Lanczos Algorithm on the SCS-
40," ETA Division Technical Report, ETA-TR-43, Boeing Computer Services, Jan.
1987.

AI-AM-

CHAPTER 3: ALGORITHM AD GEERAL SOFTWARE CONSIDERATIONS (Dr. K. W. Neves)

3.1 INTRODUCTION

It is the purpose of this chapter to delve into the relationship between hardware
architecture and computational performance. The setting is scientific computation of a
generic sense (i.e., application non-specific.) In subsequent chapters, the general
implications discussed here will be applied to algorithms specific to computational
fluid dynamics and to the major computational approaches used in that field.

In order to give a meaningful appreciation of the concepts discussed, frequent use of
examples on specific hardware architectures will be utilized. Quite often several
machine types will be included, and several will not. The reasons for this are two-
fold: 1) It is not always possible to obtain "exactly" the same benchmark results across
machine types, and 2) It is not our intent to give a definitive comparison of machine
performance. These reasons may seem superficial at first glance, yet they are
runaamental to the reality of the state-of-the-art of computer metrics. This is worthy
of brief elaboration.

The first point relates to obtaining "exact" data. In any computation, however
elemental, there are a number of hardware and software related variables that can
greatly impact performance. For example, take the simple SAXPY loop analyzed in
Chapter 2:

.1=1

DO 10 I = 1, N
10 Y(I+J) = A * X(I+J) + Y(I+J).

Note that this is the Fortran loop for unit stride, and that quite often the SAXPY
operation is employed with J equal to other integer values. The performance of this
loop can depend on a host of variables, some of which are listed in Table 3-1. Rarely,
are these variables listed or addressed in published hardware performance czcparisons.
Often the result is that the comparisons are made differently in different vendor
environments (e.g., different compiler options or different systems configurations.) In
order to gain access to many computers for testing, it is often difficult to assure that
these types of things are treated equally. For this reason, data presented in comparing
machines in this work, should be regarded as a means to assess gross comparisons of
performance relative to a particular architectural feature and not a definitive study of
relative hardware performance. Whenever possible, variables of the type in Table 3-1
will be indicated.

Parameters that Impact Performance

Compiler Related

Compiler version
optimization level (quite often a compiler parameter)
Rolled or unrolled (quite often performance can be

improved by loop unrolling, see glossary)
Stride
Non-compiler optimization--i.e. assembler
Size of loop (value of N) can affect MFT.OP rating

diffcrently on different machines

Hardware Configuration Related

Memory size and number of banks
Cache size
Model variances in memory access times
Inter CPU interference in a multiple CPU machine
Testing in a dedicated versus shared resource

TABLE 3-1

Comparing commercially available hardware is not the primary intent of this monograph.
In a field such as computer performance, the most definitive work would be quickly dated
by new hardware/systems releases. Thus, we have concentrated on the elaboration of
important architectural features that impact performance in hopes that this information
can be used in a more effective hardware evaluation methodology. In Secticn 3.4.5, the
benchmark process, itself, will be discussed.

AL_ MAUL ~ mm--d~ A-- - n - -A

56

3.2 IMPACT OF ARCHITECTURE ON CO#(PUTATICKI

In Chapter 2, several examples were given that illustrated the impact of architectural
features on performance. In particular, a generic example was given concerning the
impact of varying the number of paths-to-memory on the SAXPY operation. This was viewed
from an asymptotic performance view point. The computing community has long realized
that asymptotic behavior analysis is often misleading. Figure 3-1 illustrates the common
dilemma faced by would be purchasers of modern supercomputers. The peak performance
rate quoted by the manufacturers is compared with the actual performance as provided by
the Argonne Benchmark [3-1]. In each case, the performance obtained is a different
percentage against the maximum. In fact, for the three machines listed the performance
on the benchmark is in reverse performance order when compared to the potential peak
performance, often quoted by manufacturers. There a very clear reasons for these
apparently disparate facts. In fact, neither the benchmark results, nor the peak rates
in the figure, are particularly accurate ratings cf the three computels' relative
performance!

600

FU VP 200 CYBER 20S CR X MP'1

Peak Rate Solv,,ng 100 Eqs

Figure 3-1
The Performance Dilemma

In the remainder of this chapter, an approach to performance analysis will be explored
that not only will explain the apparent dilemma in Figure 3-1, but provides a basis for
a methodology of software development for vector romputing, an approach for software
migration to vector computing, and a more reasonable method for benchmarking
supercomputers.

3.2.1 Two-Parameter Classification of Algorithms

In Chapter 2, the parameter NI% 2 was introduced with respect tc a vector operation. As
a parameter, however, it can be applied to entire algorithms, or even to applications
that can be parameterized by linear time dependence on N, the vector length. For
example, one could compute the average N11 2 for a matrix factorization algorithm. This
could be done experimentally by randomly generating a number of matrices of size N,
performing the factorization (with pivoting), and averaging the attained MFLOP rates for
the family of runs. Next this could be repeated for values of N achieving a "plot" of
MFLOPS versus N from which one could determine the va~ue of N that achieves
approximately half the indicated asymptotic maximum (i.e., indicated by the MFLOPS for
large values of N.) While this would be a time consuming process, it certainly could be
a valid comparison of machine performance (neglecting compiler and hardware
configuration variances.)

In the next few sections a number of computations will be displayed using a two-
parameter classification of performance, where both N1/2 and the MFLOP rate are employed
in a two-dimensional peformance space displayed in 'igure 3-2. The additional insight
that this simple additional parameter imparts, is rather striking, as will be observed.

A - -

50

400

300

200

10 _oo __ ___ 100 __ oo ___ o50

.1 50 - _ _ - _ _ _ -

U.

30

20 - - _ _ _-

10 20 30 50 80 100 200 300 400500
N 1 /2

Figure 3-2
The Two-Parameter Domain

The performance point, illustrated in Figure 3-2, has the following meaning: Given an
operation or algorithm that depends on "length" N, the illustrated point indicates that
the performance for very large N approaches 80 MFLOPS, and for length N=50, the
performance would be 40 MFLOPS. A mentioned in Chapter 2, one can observe various
heuristic "rules of thumb." For example, if N is greater than 3 times N112 , performance
is generally acceptably close to maximum. If N is less than N112, performance is
significantly below the rated potential of the machine.

There are a number of interesting peculiarities about the parameter N112 . To illustrate
just one, assume that a vector operation achieves an asymptotic rate of one result
(floating point operation) per machine cycle. Also assume that the operation is
composed of a memory read pipe and a floating point unit pipe chained together so that
the resulting combined segmentation is M segments long. The parameter N11 2, is simply
the value of N to achieve half this rate. Let CT be the cycle time, then tne time to
perform A "ectcr opei:ation of length N is given by

T CT (M + N).

The time per operation is given by

N/T = N/[CT(M+N)],

or

1
N/T =--------------

CT (M/N + 1)

Allowing N to approach infinity, results in the asymptotic rate in results per second,
which is I/CT, an obvious result. Half of this performance rate is I/(2*CT). This is
achieved when N=M. This somewhat surprising result stated simply is the following:

If the operation is the result of an M segment process, and there is
one result per cycle, then the N11 2 is simply egual to the number of
segments, M.

The segment length is a measure of parallelism, in that it indicates the maximum number
of active operand pairs are being manipulated at one time. This term has been called
the "depth of parallelism." (See 3-21.) Thus, this parameter is very related to
parallelism. It is also, very clearly, an indicator of startup time. In fact in the
above example, the starLUp time is CT*M, and since N 1 2 is, in fact, M, the parameter
contributes directly to the startup time. Generalizaions of N/2 to a purely parallel
environment have been suggested by the term's originator, Hoc hey (3-3]. (One would
expect that a generalization of N11 2 in a parallel environment to be related to the
number of processors, i.e., the deph of parallelism.)

To illustrate how the two-parameter domain can be used to display and analyze
performance, the SAXPY operation and a simple vector to vector addition have been chosen
as the underlying operations in order to compare several machine architectures.

Figure 3-3 displays a performance polygon for the SAXPY operation on the CRAY-I. The
vertices are labeled RT, MT, RD, MD. The "T" stands for triad, indicating the
operations of a scalar times a vector plus another vector (a typical SAXPY). The "D"
indicates the simple dyad, or addition of two vectors. As will be observed, most
machines seem to perform best on the triad operation. The "R" and "M" applies to
register oriented machines. The "R" indicates the operation is being performed from
data already stored in registers and the result will be placed in registers. This is,
of course, an unnatural situation in that during the course of computing, the data must
get to and from memory. The "M" indicates the same operations, but with data fetched
and stored in memory (through registers if required).

SOo

3WC

200

20 '

100

20 30 80 60 100 200 300 400 50

N 11 2

Figure 3-3
Triads and Dyads on the CRAY-I

The peak performance rate for a CRAY-i is often quoted as 160 MFLOPS. Where does this
number come from? It is possible on the CRAY-I to put a scalar in a register then use
it to multiply each component of a vector of length 64-words (sitting in a vector
registers). As the vector multiply unit begins to produce results, these products can
be streamed (chained or linked) as input into the add unit along with another vector
from a second register. The result of this chained addition can the be stored in still
another vector register. What was just described is, indeed, the triad operation whose
performance point is displayed by "RT" in Figure 3-3. A simple computation, noting the
12.5 nanosecond cycle time, and the fact that two floating point operations per cycle
(an add and a multiply) are produced when the pipe is full, results in the 160 MFLOP
figure. The N, 2 is approximately 28 for the RT operation; therefore, the "RT"
coordinate is iven by (28,160) in the two dimensional representation. The "RD"
performance point indicates the register to register computation rate is (10,80) when
only one dyadic operation, an add or a multiply, is being performed. This should be
obvious since only one result per cycle can be produced. In the final analysis,
however, the definitive performance numbers are given by "MD" and "MT", which represent
the full flow of data from memory through the computational units, and back to memory.
Note that the "MT' performance point, for the CRAY-I, is over a factor of 3 degraded
from the potential peak rate!

Figure 3-4 is a superposition of the X-MP polygon over the CRAY-I polygon. It is
interesting to observe, in this parameter space, the result of a simple architectural
change. As mentioned in Chapter 2, one of the fundamental improvements in the X-MP
architecture over the CRAY-I, is the inclusion of 3-paths-to-memory rather than one.
The result is a dramatic improvement in performance for the "MT" operation. As
displayed for the CRAY-l, the coordinate point is (28,50). While for the X-MP, it is
(13,200). Thus, on the X-MP (with the 9.5 nanosecond clock) the "NT" operation has an
improved peak performance of a factor of four over tne CRAY-i (with its 12.5 nanczecond
clock). The underlying chip technology accounts for only 25% of the 400% improvement.
Credit the rest to an architectural improvement. Another striking feature of the Craymachines is their relatively small 011/2 parameter values, all around 30.

200 CRAYX-MP I

100 -lC

MD201-

10 , _N
1 /2

2031s0o 0

Figure 3-4
Triads and Dyads on the CRAY X-NP

Figure 3-5 adds the CYBER 205 (two-pipe machine in 64-bit mode). It is interesting to
compare the CRAY-i and the 2-pipe 205, for they competed in the market place for some
time with the CRAY-I the apparent winner. While their respective peak performance
ranges were comparable, depending on stride and memory access, the CRAY-i had a far
superior NI/2 . It is generally accepted that this latter feature enabled the CRAY-i to
perform beEter on typical benchmark programs.

500 1-
400

CRAY X-MP

200 -Contiguous

t 100- L I_
D

S CRA S CYBER 205
so (2-plp.)

.(64-bit wods)

2O M

101
20 30 50 80 100 200 300 400 500

N1 n

Figure 3-5
Triads and Dyads on the CYBER 205

Since the 205 is not a register oriented machine, its two-parameter polygon needs some
explanation. The vertices on the left (top and bottom) represent the dyad operations
and the vertices on the right (top and bottom) represent the triad operations. All
operations on the 205 are memory-to-memory. The top points represent the operations
when the data is accessed with unit stride, i.e., contiguous in memory. For example, if
a matrix is stored by columns in memory (the CYBER 205 allovs for column storage or row
storage, whereas column storage is more the standard on most computers), then accessing
vectors along a column will proceed contiguously. However, if one wishes to manipulate
the row of a column-stored matrix, the data resides in memory with a stride of N, where
N was the dimension of the matrix. On a CYBER 205, accessing with a stride of 2 results
in a degradation of a factor of two in performance. Beyond two one should consider
utilizing a gather operation and if necessary a scatter operation to store the result.
Thus, there is a considerable degradation in performance when manipulating vectors whose
components are stored with non-unit stride. This is indicated by the lower vertices in
the Figure 3-5, which represent optimal access of vectors with strides greater than four
using the additional gather/scatter operations provided.

.... . - . . _ _ I . s . i . t 1-_ L . .

It is instructive to use Figure 3-5 to make some inferences about performance on an
algorithm. Consider simple matrix factorization without pivoting. The inner loop of
Gaussian factorization, as it is often written, is the SAXPY operation. The algorithm
can be written in column-ordered form which would access data in the inner-loop in
=ontiguous fashion. This would enable the CYBER 205 to operate the inner-loop at
maximum rates.

Referring to Figure 3-5, one can compare the CRAY X-MP performance to the CYBER 205
performance for the SAXPY inner-loop (memory-to-memory, contiguous data). The X-MP
performance point for this loop is (33,200) and the 205 point is (200,200). Comparing
the second coordinate (i.e., the asymptotic maximum rate for this loop), one observes
that both machines are capable of achieving 200 MFLOPS in 64-bit mode. The first
coordinate, N11 2 , however, differs greatly. Using the "rule of thumb" alluded to
earlier, one can now estimate an upper bound on performance for a specific problem size.
Gaussian elimination can proceed at no faster rate than the inner-loop. Let's assume a
problem size of 200. At each stage of Gaussian elimination the loop length will shrink
by one; thus, the maximum computation rate in MFLOPS will be dominated by the
performance at loop length of 200. For the CYBER 205, N]/, =200. Therefore, the loop
performance at N = 200 is 100 MFLOPS. The N112 for the R-MP is only 33; therefore, N =
200 is well over three times the N% 2. Consequently, the maximum loop computation rate
will be very close to 200 MFLOPS. s the size of the inner-loop shrinks the performance
edge favors the CRAY even more. Using this line of reasoning, it is not difficult to
see why these two computers, rated at the same peak performance rate, perform
differently on this algorithm and problem size. In fact, referring to Figure 3-1, this
is a partial explanation for the disparity between the 205 and X-MP on the benchmark
performance, which was for problem size 100.

Some insight into the impact of parallelism can also be gained from examining these two-
parameter diagrams in a multiple CPU or multiple functional unit environment. Figure 3-
6 can be used to see the effects of two different approaches to replicatie parallelism.
in tne case ut Lhe iRAY X-MP, parallelism is introduced by =ddi., another CPU. Whereas,
in the case of the CYBER 205, optional pipeline units are added to the architecture.
The effect on a triad operation is the same for each machine, the N1/2 and the peak
rates both double. In fact, if the goal of introducing parallelism is simply to improve
performance on SIMD processing of elementary loop calculations, the approach of adding
functional units is far simpler, and just as effective as adding CPUs. However, by
adding CPUs the possibility of MIMD processing is created. There is no doubt that the
multiple CPU approach will be preferred in future machines because of this flexibility
and because of the limits to which we can produce highly vectorizable programs with very
long vector operands. In fact, since the N1 /, generally doubles with a doubling of the
depth of parallelism, the vector length for efficient operation doubles as well.

5WTri": r _,dnx +___

CRAY X-MP , 2PI 1 ___ T
200

Contiguous

L~.~:z~-RTI CYBER 2050 (4-pip,) _
u L CRAYlS CYBER 205

50 - h- T (2-pipe)3 0 - -(64-bit words w

20

30*

10
No... ~g.,us

20 30 50 0 100 200 300 400 80
N1 /2

Figure 3-6
Parallelism in To-Parameters

Figure 3-7 adds the Fujitsu VP-200, however this polygon is slightly different. The
four corners are all memory to memory operations. The left-top vertex is a MT. The
left-bottom vertex is a MD. The right hand vertices (top and bottom) are the loops
without unit stride. The VP-200 loses one path to memory in the processing of strided
loops, causing this degradation. An awarenep- 'f thip dp-4-tilon in alanrithm design
for the VP-200, can mean a factor of two or more in performance.

3W 2O -0 CK8M0020 3 4OO

.141

sNac

I CP

20YBEe 20

102 o so s c /0 30040000

Triads and Dyads on Several Suerciputers

The dense vector dyad and triad operations data are the ideal operations for most vector
computers. These machines were literally designed for high performance on these
operations. Unfortunately, all of science does not rest on these two operations. To
rate computer performance solely on the performance of these loops is little better than
basing one's assessment only on the peak MFLOP rate. To illustrate this, consider a
slightly more complex computation built upon dyad and triad operations, the matrix
factorization. With an awareness of the underlying architecture and its strengths and
weaknesses, one can minimize the impact of obvious computational bottlenecks through
clever instruction selection or algorithm alternatives. Sometimes compilers ca:.
accomplish improvement through clever scheduling algorithms, but the substantial gains
are made at the algorithm level. A well known technique to avoid to path deficienciescan be utilized in matrix factorization. The concept was developed for the CRAy-i which
often had performance problems on key loops because of the single path to memory. Fong
and Jordan (3-4] coined the phrase "supervector" performance for the technique. A
typical Gaussian elimination algorithm kernel based on the SAXPY is given below.

DO 10 I -, -i
DO 10 K (+1, N

A(I,K) = A(I,K)!A(I,I)
DO 10 J M+1, N

A(J,K) = A(J,K) - A(JI)*A(t,K)
10 CONTINUE

The order of these loops can be changed to produced a column-ordered elimination as

follows:

DO 10 K = 2, N
DO 10 I = 1, K-i

A(I,K) = A(I,K)/A(I,I)
DO 10 J = 1+1, N

A(J,K) =A(J,K) - A(J,I)*A(I,K)
10 CONTINUE

The inner-most loop in either formulation is the SAXP. At face value, it has two
vector memory fetches and one vector memory store. However, with a bit of reflection,
one can observe that in the second formultion, the vector A(J,K) for l = +1 to N. is
being used as an accumulation array and can be saved (if there are registers for the
next second level loop iteration on I. This can be done in sices egual to the vector
register length and can proceed with only one vector memory fetch, for A(J,I) =1nt.
The final store of A(J,K) occurs only at the outer-most loop level (for each vector
slice) when K is incremented. This is a dramatic decrease in memory traffic, and, on a
path limited machine, it is possible to improve performance as significantly as adding

needed paths!I
One can look at a few generic architectural parameters and observe performance behavior
using "proper" algorithm techniques. In Table 3-2, four machine characteristics are

DO 10 1=-,--

62

compared in an "order-arithmetic" fashion. [By order arithmetic, we refer to a common
terminology often used in complexity and numerical analyses wherein only powers of
salient terms are used and minor additive constants are ignored. For example, in
counting the number of cycles of a vector operation of length M, one would use O(M) to
indicate that for large M, the startup times are negligible. If multiplicative terms
are consequential, the can be included. The interpretation of such notation is usually
clear from the context, and will be used occasionally in this chapter.] The first 3
variations are using 1, 2 and 3 paths, and the fourth variation is a 3-path, but non-
register machine. This latter machine could be likened to a CYBER 205. The CRAY-1 is a
one-path register machine, the Fujitsu VP-200 and the FPS 264 are two-path register
machines; and the CRAY X-MP is a 3-path register machine. The table, however, is a
study in a generic setting, the fact the characteristics exist in the commercially
available architectures mentioned is an aside. Loop 2 is the SAXPY and Loop 2 contains
four vector memory references (3 fetches and I store).

Achieving Efficiency

LOOP 1: A - X(I) + Y(I) ; I 2 1, N
LOOP 2: A(I) * X(I) + Y(I) ; I = 1, N

TIME IN CYCLES

(neglecting startup)

LOOP 1 LOOP 2

VECTOR SUPERVECTOR VECTOR SUPERVECTOR
------------------------------------.-.----------

I PATH/REG. 3N N 4N _N
2 PATH/REG. 1.5N N 2N N
3 PATH/REG. N N I.5N N
3 PATH NO REG. N N 2N 2N

TABLE 3-2

The table illustrates several conclusions worth mentioning. First, a non-register
machine cannot ameliorate path deficiencies through tricks like supervector programming,
for this technique is register oriented. Supervector programming can produce dramatic
performance improvement as noted by Loop 1 on the 1-path machine. In fact, this
technique is used in most CRAY-l algorithms for dense matrix factorization. When the
number of paths is less than the number of memory references the "trick" described in
FiguLe 2-zO in Chapte 2 can be employed to a-h' ve worthwhile improvements as indicated
by both the 1.5N entries in the table. Finally, on Loop 2 one observes that
supervector programming with registers, even on a 1-path machine, is as effective as 3-
paths-to-memory on a non-register architecture. This analysis has ignored other
significant factors such as startup time, but serves as our first in-depth illut~at-F,
of how architectural features can interplay with algorithmic strategies to produce
"better" than expected results.

*******.**** IMPORTANT CONCEPTS ********

O Performance is affected by a curious mixture of compiler, operating systems,
hardware architecture, and algorithm selection.

o The peak performance possible (usually rated in MFLOPS) is a function of
hardware only. Whereas, achieving the highest possible performance on a
specific computation is a software issue.

o N1 /j (the length of a vector to achieve half the peak performance) is another
useful parameter for rating performance.

If vector length is consistently less that N1 /2, vector operations will
be poor in performance.

If vector length is greater than three times N11 2, performance in vector
mode will be close to maximum.

N112 is a way to measure the depth of parallelism inherent in a process
on a vector machine, and has a natural analog on parallel machines, the
related to the number of CPUs.

" The features discussed in Chapter 2, paths-to-memory, vector storage
restrictions, registers if well understood can be utilized in unique ways to
improve the computational performance of simple algorithms.

3.2.2 Case Study: Sparse Matrix Computation

Matrix factorization is a fundamental algorithmic tool of scientific com,,utation.
Recognition of this fact gave birth to vector computing, for it was realized that most
dense matrix manipuLations and solution processes deal with vectors. However, while
this hardware revolution was taking place, algorithm researchers were busy conquering
another aspect of computational limitations, that of lack of memory. It is very common
in scientific computation to deal with matrices that are not dense (i.e., full of
zeros). In partial differential equations, structural analysis, network related
computations, and a host of other areas, the naturally occurring matrices are sparse. In
some applications the occurrence of the non-zeros is very structured. Other times the
occurrence of the non-zeros is random. Motivated by storage economy and dramatic
reduction in the number of computations to solve a sparse equation, researchers have
developed a number of robust algorithms that create a tremendous savings of c-mputer
time. This, in time, allows fot the solution of significantly larger problem classes,
irrespective of computer power. In such algorithms the complexity of the solution
process is increased, however, by the introduction of storage schemes for the sparse
vectors. Hardware manufacturers took some time to respond to these algorithm advances
by providing sparse vector instructions implemented in hardware.

Historically, the CDC Star-100 computer attempted to accommodate the "sparse vector"
construct in both hardware and software. The Cray series of supercomputers largely
ignored these algorithmic kernels in their instruction set. In 1983, Fujitsu and
Hitachi introduced their supercomputers which included hardware instructions for
"gather/scatter" operations that most sparse matrix computations require. In addition
these Japanese manufacturers took e very aggressive approach in compiler optlmize" on
that utilized these instructions to improve the performance of otherwise non-
vectorizable loops. In apparent response to the popularity of this instruction, Cray
Research introduced an upgrade to the X-MP line in 1983 that includes the gather and
s'-tte- instructions. Since then new computers such as the NEC SX-2, the CRAY-2, and
the 3090/VF support this instruction type. In this section, a closer look at this
instruction class will be used to reveal the impact of hardware changes of this type on
computation.

Figure 3-8 lists and illustrates a basic Fortran loop employed in direct elimination
methods for factorization of sparse matrices. Not all sparse techniques use this
particular loop. Some algorithms exploit particular "structure" or sparsity patterns.
This loop, however, does represent both the computation and the data structures that
have been used most often. Some of the sparsest matrix problems occur in electric
power distribution systems. In this class of application, it is not unusual to have the
sparse loop in Figure 3-8 accounting for 80% of the CPU time.

DO 101 = 1, N
J = Index(I)

10 Y(J)= a*X(I)+Y(J)

Y Y

0
o Ypack+ aX" o0

+ 1
o 0

Figure 3-8
Th, Sparse Matrix Loop

As illustrated the loop relies on an "index" vector to keep track of the location of the
non-zeros in the "full" vector (typically a column in a matrix). The full mathematical
vector is rarely stored. Its non-zeros are stored and expanded to full vector form only
in the sense of the above loop. With these methods the number of operations for common
sparse matrix operations is "order-M", O(M), as opposed to O(M**3), where M is the
matrix size. A detailed description of this class of factorization algorithm is given
in Dembart and Neves [3-5]. The challenges in sparse matrix algorithm design actually
begin in development of effective ordering schemes that will reduce the amount of "fill-
in" (creation of new non-zeros) that occurs during the numerical solution. A

64

description of ordering algorithms is beyond the scope of this discussion. The reader
is referred to a more general discussion of a variety of sparse algorithms and ordering
schemes in Duff, Erisman and Reid (3-6]. The timing of sparse instructions are the crux
of their effectiveness. Startup time (reflected in N/ 2) and the asymptotic rate are
both critical. However, the range of loop sizes does no? tend to get enormously large.
For this reason, in this section the entire performance curve over the vector length
will be examined whenever possible.

The CDC Star 100, CYBER 203 and the CYBER 205 implemented the same set of hardware
instructions. Their instruction set suitable for the vector loop above, was quite rich
with alternatives. In fact, today's supercomputers offer similar choices. Early
versions of CDC's vector compilers even had sparse vector constructs added to Fortran.
These were eventually dropped for a number of reasons. The types of control mechanism
employed by these machines fell into two categories. One was the index vector approach,
and the other was the control vector approach. The latter employs a bit-vector. A "1"
in a bit location signified a non-zero. (At least this was a typical usage.) The bit
control vectors could be used to suppress storage of a result, but not its calculation.
It is possible to construct seven different methods for processing the Figure 3-8 loop.
One must realize throughout this discussion that there are two basic loop parameters.
One is M, the length of a full vector (the dimension of the matrix being solved.) The
other is N, the number of non-zeros in a given row. The tacit assumption is that, for
algorithms of this class, M >> N. Table 3-3 below lists the different methods.

Sparse Loop Complexity on CYBER 200 Series

METHODS ORDER ARITHMETIC
--..

1. SCALAR FORTRAN O(N)

2. VECTOR FORTRAN USING FULL O(M)
VECTORS-IGNORING SPARSITY

3. COMPRESS/EXPAND (LIKE GATHER/SCATTER O(M) + O(N)
ONLY USING BIT-CONTROL)

4. THE SAME AS 3 WITH PROVIDED LIBRARY 0(M) + O(N)
ROUTINES

5. EXPAND BY BIT, USE FULL VECTOR OPS O(M) + O(N)
VIA BIT CONTROL

6. ADD NORMAL SPARSE (FORTRAN PROVIDED O(M) + ON:
CONSTRUCT)

7. TRUE GATHER/SCATTER VIA INDEX O(N)

TABLE 3-3

As far as asymptotic performance, one can quickly infer form the table that loops I and
7 should prevail as the sparsity increases. Any method with O(M) manipulations will be
slower than an O(N) method as M approaches infinity, assuming N is bounded. The
question as to actual performance when M is finite and N varies, is a different matter.

(Note: the CYBER series computers indeed have the gather/scatter constructs. One very
significant difference between these machines and the other supercomputers is the
memory-to-memory limitation. A memory-to-memory gather operation of a disperse vector
into a contiguously packed vector is not chained or linked into a functional unit. it
is a preliminary step which is followed by a vector operation. The CRAY X-MP, CRAY-2,
Fujitsu VPs, Hitachi S-810, NEC SX, and the IBM 3090-VF, the random placement of data
can be streamed into functional units without this intermediate step. Note that tne IBM
3090 VF has the functional units cache interfaced which can degrade performance due to
frequent cache hits resulting from widely scattered data.]

In fact, the subtleties of architectural balance are very apparent in this discussion.
The relative speed of scalar and vector operations become a fundamental performance
issue with respect to algorithm selection. From an architectural balance point of view,
the three CDC machines can be characterized as follows:

STAR-100 - slow scalar performance relative to vector speed

CYBER 203- fast scalar performance same vector speed as 100

CYBER 205- 203 scalar speed with very fast vector speed

Figures 3-9 through 3-12 below display the fact that architectural balance can greatly
impact algorithm selection. The figures display the best performing algorithm over the
two-parameter plain of M and N. Recall that N is less than M, and that for most

interesting applications of the sparse loop, N is very much less than M. The diagonal
line represents N=M, the case when the number of non-zeros equals the full vector length
(i.e. dense).

5000 t5000.5000)

N>M

N N

(5000,740)

(5000,167)

............. (5000.50)

(1)M 5000\7

uz/ ,See Figure 3.1

Greater Resolution

Figure 3-9
Density Performance Diagram -Star 100, part 1

Nh

400 (400. ~20)(5000,400)

N SN

/ (5000,167;

- - (5000,S)

(11)M 5000

Figure 3-10
Density Performance Diagram -Star 100, part 2

- (5000,5000)

I~ '~ i I I 0

758

4 8 1 .6 2 7 6

M

Figure 3-11
Density Perfrmance Diagram -CYBEM 203

j,7

(5000.5000)

N N

2

Pon')
7 (500,722)

M,~ (5000,5)

Figure 3-12
Density Performance Diagram - CYBER 205 (2-pipe)

At 10% density (or less), sparse algorithms can be quite advantageous. Methods 1, 5,
and 7 are the methods of choice in the less than 10% sparse range, with method 5 being
effective only on the CYBER 203. In fact, since the size of the inner loop and density
actually vary during the course of a factorization, a truly optimal method might be a
hybrid method, if low overhead switches could be worked out. It wasn't until the CYBER
205, however, that the hardware gather/scatter approach was successful enough to
dominate the process over the most interesting ranges for NIM. Experience reveals that
the common upper value for the number of non-zeros in a column, with a good ordering
algorithm can remain surprisingly small. This is of course application dependent. In
the most sparse problems that we have encountered, electric power transmission problems,
it is not unusual to have matrices of order 5000 with less than 40 non-zeros in any
column after fill-in. In Navier-Stokes analysis, the matrices can be quite sparse as
well, although somewhat more structured. With the advent of gather/scatter operations
in hardware, new approaches to matrix solutions in this application area should be
explored. In other fields, it has been demonstrated that ignoring the structure of the
matrices in favor of random sparse methods, can lead to performance gains.

The limitation of the CYBER 200s vector floating point operations to contiguously stored
vectors, required the eventual improvement of the gather/scatter operations, for they
are also used in dense manipulations on the CYBER series in order to effectively
manipulate strided vectors (such as the row of a column-stored matrix). Nevertheless,
the utility of these instructions in sparse manipulations proved important in so many
applications, that they have become an important part of the (de facto) standard set of
vector operations i' most -f today's supercomputers.

The detail offered here on the various methods (for performing this inner loop on the
CYBER series) is illustrative of similar choices required on the Japanese machines which
employ an optimizing compiler for the removal or optimization of "IF-tests" in DO-Loops.
This will be discussed further in Section 3.4.2.

A case study of the sparse loop would not be complete without examining its
implementation on several different machines. In addition, it will be valuable to
examine the impact of how variances in the loop's performance impact the entire
factorization algorithm. Figure 3-13 displays the performance of the sparse loop on a
computer, the CRAY-1, without the hardware instructions that support vector
gather/scatter. Three MFLOP-curves are given plotted against vector length. One can
determine the NI/, values for each curve by dividing the peak performance by 2 and
finding the value Tor N at which the curve crosses its half maximum value. The Fortran
curve is the result of the CFT 1.13 compiler, and is the result of scalar processing.
The curve labeled GSS is a combination of an assembler version of a gather routine, a

A!_Aa

68

SAXPY routine, and a scatter routine, all written in nearly optimal fashion. This
three module approach would mimic the hardware approach required on a CYBER 205 with a
vector gather, vector triad, and vector scatter operation. The top curve is simply one
module coded with as much overlap and optimization as is possible. All three curves
are, of course, scalar subroutines since the CRAY-I has no vector hardware features to
employ for these loops.

i ,2C APACK

MFLOPS

40 s0
N

Figure 3-13
Sparse Loop in Software - CRAY-I

One can observe that the asymptotic maximums are quite different. The fastest loop is
three times more powerful asymptotically than Fortran. The GSS loop is only twice as
fast. Table 3-4 gives the factorization times on two matrices, one happens to be from a
very sparse power systems problem, and the other from a large structural analysis
problem.

Sparse Factorization Times - CRAY-I

STRUCTURES PROBLEM POWER PROBLEM

FORTRAN 1.2 sec 0.181 sec

GSS 0.9 sec 0.240 sec

SAXPf 0.6 sec 0.168 sec

TABLE 3-4

The structures example conforms to one's intuition. The factorization time for the
algorithm using the Fortran loop is the slowest and the others show improvement in a
fashion that corresponds (somewhat less than linearly) to their relative loop maximum
rates. Since the inner-loop on this problem does not totally dominate the computation,
the improvements are slightly less than linear. The performdnce of the power problem's
matrix factorization, however, shows some anomalous behavior. The SAXPY is only
slightly faster than Fortran, and GSS as an inner-loop, in fact, significantly slows the
performance. To see why these results are appropriate, return to Figure 3-13 an observe
that the N11 2 for the GSS curve is very different. The N112 values are roughly as
follows:

N.. 2

FORTRAN 20
GSS 60
ASSEMBLER 20

6)

As a result, the performance for small values of N can be very different. In fact, for
N C 35, the GSS loop is slower than the Fortran loop. It so happens that the structures
problem often has well over 40 non-zeros per row, consequently the loops are exercised
at values of N large enough to behave more like their respective maximum rates. The
power problem, however, always exercises the loops with values of N < 40, causing the
apparent anomaly. This example, although not related to vector programming, illustrates
a basic concept: kernel computations can only be used to predict performance if there
is a thorough knowledge of how application programs exercise these kernels (i.e.,
knowledge of what parameters the loop will be given throughout the computation.)

Figure 3-14 displays the loop performance curves for the other machines listed. The
loops are written in near optimal assembler for each machine listed, as opposed to
Fortran. The dotted line for the CYBER 205, is method 7, displayed in Figure 3-12.
Note that even though this is now a "vector" operation, the cross-over p int for the
CRAY-l in assembler is surprisingly large at N=45. In fact, the power problem would be
faster on the CRAY-l, a totally scalar approach, but with superior scalar speed. The
more modern implementations of the gather/scatter operations, lead to the more
impressive timing curves for the X-MP and the Fujitsu VP-200. (Timings for the Fujitsu
VP-400 and the NEC SX-2 were not available, but could prove interesting--particularly,
the MW(qW-7 with its relatively fast clock.) Since the X-MP curve has a lower
asymptotic maximum (93 MFLOPS) than the Fujitsu VP-200 (at 176 MFLOPS), the curves will
cross (not displayed). The cross-over point is about N = 100. Applications that lead
to denser, yet randomly sparse, matrices could conceivably operate with over one
hundred non-zeros in a single row with fill-in. In fact, as problem sizes become larger
this is likely. For those problems the Fujitsu machine will improve relatively to the
X-MP, at least at the inner-loop level.

CRAY X-MP
(90 MFLOPS) Fujitsu CYBER 205(176 MFLOPS) (2-pp.)

S I(38 MFLOPS)

Ile CRAYPACK

MFLOPS

/'/ / CFT 1.09

408

Figure 3-14

Sparse Loop in Vector Mode - CYBER, Fujitsu, X-MP

Table 3-5 illustrates the improvement possible when a function such as the sparse loop
is supported by vector instructions in the proper manner. The X-MP timings are single
CPU times on an X-MP that supports vector gather/scatter (9.5 nanosecond clock). The
problems in the table are actual sparse matrices that arise in oil reservoir simulations
for a large US oil company. The performance improvement (factor 2,9 to 3.4) is rather
surprising considering that only 1.25 is due to cycle time improvements, and the balance
due to one small Fortran loop.

agoigcnieig htol .5i u t yl ieipoemns n h aac

70

Sparse Factorization Times: CRAY-I vs. X-MP

MATRIX
DIMENSION CRAY-iS CRAY X-MP SPEEDUP FACTOR

..

1080 2.559 sec 0.745 sec 3.4
5005 2.942 sec 0.959 sec 3.1
1104 0.141 sec 0.07C sec 2.0
3312 2.032 sec 0.701 sec 2.9

TABLE 3-5

********* IMPORTANT CONCEPTS ***********t*

It may seem that an inordinate amount of discussion has taken place on one simple loop.
The loop arises in many fields and is an important loop. However, the concepts
discussed in this case study are indicative of basic performance issues in vector
computing.

" Quite often important algorithms or even entire applications, have key
computational kernels that account for a substantial percentage of computing
time.

o Time consuming computational kernels can be extremely sensitive to
architectural features.

o Converting scalar operations to vector operations doesn't always mean
performance will improve.

" For some computational kernels N11 2 can be as important as the asymptotic
performance rate.

3.3 PRINCIPLES OF VECTORIZATION

Any exposition on vectorization should logically begin with a law attributed to Gene
Amdahl, although it was independently stated by several persons. The application of the
law to vectorization is discussed here including the ramification of parameters such as
N11 2. (A statement of Amdahl's for parallel machines is given in the glossary.)

The law itself is a statement of the intuitively obvious: If one has both, a high
performance computing engine and a lower performance computing engine, then executing a
greater percentage of your application on the high performance engine will result in
greater execution speed. If the high speed engine is a "vector" functional unit and the
lower speed engine is a "scalar" unit, then performance is improved by "transferring"
more of the computational process to the vector unit. This ""transferring process" is
often termed "vectorization". To make these heuristic comments more precise, let V be
the vector speed of a process and S be its scalar speed. Call G the gain in speed by
performing the percentage P of the process on the vector units. The performance gain,
G, is given by Equation 3-1 below:

-1
G = [(1 - P) + P/RJ (3-1)

where R is the ratio of the improved vector to scalar spe ds, V/S. (Note that P is
expressed as a fraction between zero and one in the formula.) Figure 3-15 displays the
characteristic curve for ratios of R = 10 and R = infinity. The former ratio is typical
of current vector/scalar technology. The latter ratio, represented by the dotted line,
is the impossible case of an infinitely fast vector unit. The horizontal axis
represents the percentage of the computation time moved to the vector (faster)
computational engine. One must be very careful to observe that this percentage should
be interpreted as the striking fact that 100% "vectorization" with R = 10 is equally as
effective as the impossible situation of 90% vectorization on an infinitely fast vector
unit.

10 O Vector Speed P
8 10:1 Vector Speed /

Speed- 6/
Up

Ratio 4 -, 00

2 .

I ,I I I
0 25 50 75 100

Percent

Figure 3-15
Amdahl's Law

Figure 3-16 gives another look at the same phenomenon, at 75% vectorization. At this
percentage of vectorization, the abiliLy to infinitely increase the vector unit's
performance would improve overall performance from 3.63 times scalar speed to 4 times
scalar speed. (This is indicated by the arrow upward to the dotted line.) However, the
striking result is that, by increasing the percentage of vectorization to 90% from 75%,
the performance goes from 3.63 times scalar to 5.26 scalar speed. This latter
improvement is entirely a software design issue. Nevertheless, the pay-off is greater
than that attainable by the impossible hardware improvement suggested. This illustrates
that architectural improvements are really only opportunities for performance
improvements, and that the opportunity is not realized except in software that can take
advantage of the hardware design.

10 o Vector Speed P
8 10:1 Vector Speed /

Speed- 6
Up

Ratio 4

2 --

0 25 50 75 90 100
Percent

Figure 3-16
Amdahl's Law: Implications

Unfortunately, Amdahl's law as stated above is, in some sense, only an ideal case. When
one assumes the vector unit speed is, say, ten times the scalar speed, the implicit
assumption is that the asymptotic performance is ten times faster than the scalar speed,

AIL

71

As pointed out in Chapter 2 (see Figure 2-13), the performance for short vectors can be
very different. In fact, recall that N

1
/2 was defined to be the vector length to

achieve one half the full performance. other performance related vector lengths could
be defined. For example, one could define Nb as the "break even" vector length. That
is, the length of a vector for which scalar performance is equal to vector performance.
When one uses segmented pipelined approach to performance improvement, the penalty is
that processing only a single operand pair takes longer than doing it in scalar mode.
Consequently, there is a length for which the two approaches are roughly equal -- N .
Figure 3-17 displays the performance ranges for Amdahl's Law with various vector lengths
(N = infinity, N = N112 , N = Nb). The fact is that this chart is quite realistic. For
example, the hashed region below the Nb curve is for vector lengths less than the break
even vector length, meaning that scalar performance is better than vector performance
for these vector lengths. As is indicated in this region -- the greater the
vectorization, the poorer the performance! Indeed, it has been observed in actual
application programs that performance can degrade with compilc vector optimization
options turned on, versus left off. In fact, closer examination of the programs of this
type often reveals that for the algorithm being used the most, the Nb is quite large,
and the average vector length used is small. With some work this situation can often be
rectified.

10 o Vector Speed N=-

10:1 Vector Speed /
Vectorization:

Speed- 6 Quality vs Quantity

Up
Ratio

2

0 25 50 75 100

Percent

Figure 3-17
Amdahl's Law: The Reality

The implications of Amdahl's law are clear. The introduction of pipelined/parallel
function units to improve performance is not a panacea. The necessity of attaining a
high percentage of vectorization is fundamental, but it is equally important to have
"high" quality vectorization--i.e. operations with long (very much greater than N1 /2)
vectors. Quality also in the sense of appropriate usage of machine characteristics.
For example, we observed previously (in Figure 3-11) that for at least one operation,
the vector mode was slower than the scalar mode for certain sparse operations. One must
not forget that sometimes vectorization alone is not necessarily the best approach to
code optimization.

* IMPORTANT CONC~ICTS *******fl*

0 Amdahl's law indicates that the speed of vector processors is significant
provided software can be effectively "vectorized", i.e. a high percentage of
the computation time can be executed on the vector "side" of the machine.

a A high percentage of vectorization is a necessary, but not sufficient
condition for high performance. The vector operations performed must be
executed at the high performance range of vector length. A rule of thumb: a
vector is "long" if it is three times the length of N11 2.

0 By their design, pipelined functional units are generally slower than scalar
units when performing one single operation. Therefore, there is a vector
length, Nb, for which vectors of smaller length are slower than scalar
processing of the same operations.

* * ,,--,d *n***,,.,,,,.,,.,.*.. ** ** , ,*i* * * * a. ** _

-7-

3.4 SOFTWARE NIGRATICN ISSUES

Although computing and programming have a relatively short history, the world's
technology has become very dependent on computation. Advances in science and
engineering are increasingly dependent on digital computation. Many industries rely on
"production" programs. These are programs that are characterized by repeated usage that
provides fundamental information for manufacturing or process control vital to the
economic well-being of the company involved. The vast majority of computers sold in
private industry and governmental laboratories are used to satisfy the computational
requirements of these programs. In aerospace these programs include design tools such
as CFD analysis programs, structural analysis, flutter, guidance and control,
electromagnetic analysis, and host of scientific tools required by the engineering
community. The monetary value of this software in almost any terms one uses, far out
weighs the cost of computer hardware. The person-years of labor devoted to the care and
feeding of an important production program can be enormous. Consequentl , it is no
surprising to discover that many of these programs will survive several computer
systems, dominate computer loads, and run on a variety of equipment within a single
company.

The issues related to software migration are among the most costly in the computing
process. The conversion of programs from one hardware environment to another (even of
similar underlying architecture) can consume many labor resources. New computer
designs, such as parallel machines, will probably will not be truly successful until a
sound software migration strategy is found for the enormous world-wide investment in
production programs. The technology of the computer industry must be brought to bear on
this migration problem. It is not simply an internal architecture problem, compl'er
problem, or algorithm challenge. Disk and I/O performance and system throughput are
fundamental in large-scale computing performance. In this section we will explcre
software migration issues related to vector computing, and briefly describe some of the
challenges of the parallel future that has been predicted.

3.4.1 Transportability: Is it Feasible?

The concept of "transportability" is itself a compromise, or recognition of a, perhaps,
impossible goal. In order to discuss transportability one must appreciate the goal.
The goal is portable software. For applications related to scientific computation the
term has grown to mean the ability to run (compile and execute) a single source Fortran
program on a variety of computers. In light of the large differences in today's
computer architectures, one would think this concept is almost beside the point. Yet,
the desire to have programs run in a multi-vendor environment is strongly motivated by
increased use of distributed, networked, and/or multi-tiered computing systems. With
the apparent growth of computational power within the single workstation, and the
variety of mini-, supermini-, and minisuper-computers, it is logical that entire
programs or parts of entire programs will be required to be functional in several
environments. Transportability is a rather loose term, which we will take to mean "as
portable as is practical."

The issue of true portability is not only a difficult technical challenge, but a
critical issue in reducing long term software development and maintenance costs. The
most active area of application of portability over the years has been in mathematical
subroutine libraries. A brief historical perspective is in order.

The developers of reusable mathematical software comprise a rather small community, yet
their products are used by almost all modern computational scientists. In providing
reusable tools for a broad set of users, over a broad collection of computers, these
developers began to deal with portability issues in earnest in the mid-1960's. The
biggest issue was to achieve portability without sacrificing efficiency. (For an
overview of the issues faced mathematical and statistical library developers, see [3-7),
(3-7], and (3-8].) The major vehicle for portability was a very basic subset of Fortran
(ANSI-66) commonly used. The tool used to test for portability, from a Fortran language
consistency point of view, was PFORT, developed at Bell Laboratories (3-10]. At first,
writing even simple routines (without I/O) in a form that could compile on a broad class
of Fortran compilers was difficult. Since, computers in this time frame were mostly
monolithic from a computer architecture perspective, "good" algorithms generally
minimized the number of floating point operations. A good algorithm on one computer,
was generally a good algorithm on another. However, computer environments from a
numerical perspective were different. Different word lengths, different exponent ranges
(numerical ranges), and a host of seemingly minor machine characteristics differed.
Even though the same Fortran source would compile on many machines, the resulting
executions would many times yield different numerical results.

This common problem of execution differences was an early indication of the sensitivity
of algorithms to hardware architecture, even in a purely scalar environment. The
solution to this anomaly, was to interface the algorithm development to a set of machine
characteristics defined by hardware environment subroutines. These subroutines did
nothing more than define the differences between computers in a standard way to allow
the programmer (algorithm developer) to access in Fortran callable subroutine form the
very machine characteristics that could effect the algorithm robustness. The kinds of
parameters defined include the following:

74

Symmetric range - the largest positive number x, such that x, -x, l/x and, -l/x are
floating point numbers.

overflow threshold - the largest positive x such that x and -x are floating point
numbers.

Underflow threshold -the smallest positive x such that x and -x are floating point
numbers.

Relative precision - the smallest positive floating point X such that
1 - X < 1 < 1 + X. Also called machine epsilon.

Radix - the base of the floating point number system being used. (e.g. hex, octal,
or binary)

Mantissa length - the number of radix digits in the mantissa of a floating point
number.

Exponential range

Assorted constants - e.g., pi, e

These and several other constants affect algorithm robustness and must ve defined for
single and double precision. For example, if one were advancing the time step in a
Runge-Kutta method (for solving a differential equation numerically) and the current
time, T was very large while the time step H was very small, it is possible thah T + H =
T in computer arithmetic. Knowing and employing the machine epsilon in a relative
precision test could prevent this anomaly on a variety of machines.

In essence, the portability of algorithm based subroutines was achieved using an
interface to the hardware characteristics of the computer. We have discussed at length
the increased sensitivity of algorithms in modern hardware due, not to numerical
environmental considerations, but due to fundamental architectural sensitivities that go
well beyond the ForLran language. Is portability a reasonable goal, and is
transportability practical in supercomputer environments? The meaning of "reasonable"
and "practical" deal wILh efficiency. The ability to write code that functions in
various computer architectures is not difficult. However, to have it perform optimally
fast on several supercomputers is a much more difficult challenge. However, with years
of exposure to vector processing, experienced algorithm developers, scientists, and
hardware vendors have shown that, for the class of vector supercomputers, it may be
possible to develop an algorithmic approach to this "vector optimization" challenge. In
the next section a discussion of computational kernels is given and an approach to
transportability of software is suggested. The question that remains open is, can an
approach to transportability be developed for classes of parallel computers (e.g. shared
memory machines) with reasonable efficiency in the resulting program.

****** *** IIPORTANT CONCEPTS **********

o Application programs often outlive hardware systems; thus, the topic of
migrating software from one environment to another has long been a problem,
even in scalar computing.

o For scientific codes, the hardware environment has traditionally been the area
of incompatibility (e.g. word length, machine epsilon, single/double
precision.) Vector processors have introduced a whole new level of
incompatibility, the architecture which, if ignored, can cause tremendous
performance degradation.

3.4.2 Computational Kernels as an Approach

The purpose of innovation in computer architecture is to achieve the maximum production
of useful computation given a certain level of hardware (chip and circuit)
sophistication. Thus, software development or migration methodology should also have
efficiency as a primary goal. In this section, a discussion of a high performance
approach to supercomputing is developed. At the same time, this methodology strives to
maximize the current investment in computer applications and promote a certain degree of
transportability among scalar and vector computers. The reader is cautioned, however,
for there is no pat solution for mass software migration to new computer architectures.
In any methodology of this type, a prime understanding of the application area is
fundamental to success. In subsequent chapters we focus on computational fluid
dynamics. Specific problem classes can be examined along with the underlying
computational core of the solution. Here, a generic look at computational kernels of
common use throughout scientific computation is offered.

- -- ~Ak-

Certain basic principles can be observed from a very simple, yet important computation,
the matrix multiply. This operation has a great deal of structure from a data flow
perspective. Two matrices reside in memory in some fashion, usually by successive
columns. Since the basic operations involve rows and columns combined by many inner-
products, the computation should exercise vector computers efficiently. Nevertheless,
one can quite often uncover serious computational bottlenecks by performing this
operation in several ways. The basic Fortran loop for multiplying a matrix A times a
matrix B, to result in a product C, is given by the Fortran loop below:

DO 10 I = 1, N
DO 10 J = 1, N

DO 10 K = 1, N (3-2)
C(I,J) = C(IJ) + A(IK) * C(K,J)

10 CONTINUE

This form of the computation is the natural Fortran implementation resulting from the
usual linear algebra description of matrix multiply based on inner products. Like many
nested loops, this same set of operations can be performed by alternative nestings of
the DO-loops. Two other orderings are given as follows:

DO 10 J = 1, N
DO 10 K = 1, N

DO 10 I = 1, N (3-3)
C(I,J) = C(I,J) + A(I,K) * C(K,J)

10 CONTINUE

DO 10 K = 1, N
DO 10 I = 1, N

DO 10 J = 1, N (3-4)
C(I,J) = C(IJ) + A(I,K) * C(K,J)

10 CONTINUE

In Loop 3-2, the inner-most loop is accessing a row of one matrix and a column of
another. The result is accumulated as a scalar, C(I,J), for fixed outer-loop values of
I and J. This is a most demanding operation for even the best vector computers. First,
two vector fetches are required, and the collapsing sum is not always an efficient
operation on vectorcomputers. Any operation that operates on vectors to achieve a
scalar result, can be suspect, with respect to efficiency, on many machines.

In contrast, Loop 3-3 has the SAXPY operation as an inner-loop. As has been observed,
on machines with 3-paths to memory, the SAXPY computation can be quite efficient.
However, the nested loop has a further advantage. Looking at the variation of the
middle DO-loop over K, one observes that C(I,J) for I + 2, N is used repeatedly for each
value of K. In fact, this vector can be viewed as an "accumulation vector" for the K
individual SAXPY operations. Thus, the final store and fetch of C(I,J) in the inner-
loop is not required, and (modulo the vector register length) C(I,J) can be held in the
registers. (Of course, this assumes a register interfaced architecture is being used.)
This is, in fact, the supervector approach discussed in Table 3-2. Thus, Loop 3-3 can
be an appropriate nest of loops for, say the CRAY-l. A further observation is that this
loop can also be used well in a parallel environment by assigning each K loop to a
different processor.

The third loop, 3-4, again has a SAXPY inner-loop. However, one can observe that C(I,Jj
is a matrix accumulation of the Kth column of A in an element-wise product with the
rows of B. The result is that vectors of length N*N are manipulated by storing the
repeated columns of A and repeated rows of B as large N*N vectors. While this may seem
somewhat esoteric, if the start-up times for a vector operation were extremely long,
this method could have an advantage over the supervector approach of loop 3-3, at the
expense of extra storage.

Actually, the loops can be revisited in slightly different ways by inverting the order
of access to vectors from rows to columns or columns to rows from the orders presented.
The resulting algorithms would be row ordered. It is always preferable to access data
by columns whenever possible in column-stored matrices. Figure 3-18 displays the near
optimal performance of these loops on the CRAY-i. The differences are not due to
compiler efficiency, but due to the relationship between the architectural bottlenecks
and the data access flow. It is interesting to note that Loop 3-2, the poorest
performer, is typically the preferred loop on a machine like an IBM mainframe, for it
is equally fast in scalar form and tends to minimize page faults by accessing data in a
very "expected" fashion. Loop 3-4 could be improved, but only at very non-trivial
expansion of nested loops into matrices manipulated by vector instructions of length
N*N.

76

150
150 -

100 -

MFLOPS 75

50

50
-

0 32] 0.47 0.95

0 1I
Loop (3-2) Loop (3-4) Loop (3-3)

Figure 3-18
Matrix Multiply - CRAY-I

A simple observation is appropriate. If Loop 3-2 is employed in an application program,
should the user alter his Fortran in migration to the vector world? The simple answer
is yes - in order to achieve a possible factor of 3 improvement in performance. From a
methodology perspective, however, this could be simply committing a mistake for the next
round of architectural change when another loop may be appropriate. A suggested
approach is to develop and migrate software at a higher level. The matrix multiply
should be a module appropriately coded for the target architecture in an appropriate
manner. The premise is that a computation as sensitive to architecture as a matrix
multiply should be treated as a machine environment routine and handled like the square
root or exponential function, which is "called" from application programs rather than
coded in Fortran by the user. In this case, the appropriate routine could be
implemented in Fortran or assembler. If the interface is standard, the implementation
can be done however appropriate. [Note: Another approach would be to delegate the
problem to the compiler writer. That is, automate loop renesting at the compiler
optimization level. This may be plausible for the matrix example given here, but this
is not likely to be possible for the broad range of algorithm and architecture
sensitivities. For example, the likelihood that a compiler can recognize a repetitive
scalar loop and transform it into a parallel/vector simultaneou. implementation is very
small. Certainly, this would be difficult with languages like Fortran, Pascal, or even
Ada. If a new form of language was developed, where parallelism is built into the
syntax, a possibility of effective optimization could exist. Even with the best of
luck, such a language evolution and adoption would take many years to be adopted by high
end computer vendors. For this reason, most of our comments will be confined to
Fortran-like languages.]

The matrix multiply is perhaps the easiest example to discuss in such detail, since the
algorithm is so accessible to scrutiny. However, many basic computations of science are
equally sensitive to architecture and implementation. Another example on the CRAY-l is
displayed in Figure 3-19, a two-dimensional Fast Fourier Transform (FFT). Fortran only,
Fortran with the inner computation a I-D FFT in assembler, and a completely optimized
(in assembler) version are compared. The latter algorithm maximizes supervector
performance where ever possible. As displayed, the performance differences can be
substantial.

2615

600

SCray
Fortran

-oe Fortran with
1-D CAL FF'

VECTORPACK 290

124

256 x 256 512 x S12
Figure 3-19

2-D FFT - CRAY-1

Again, it is emphasized that these differences are not solely compiler related, but
rather due to architecture and algorithm relationships. As a further example, consider
FFT algorithms on a Fujitsu VP-200 (Amdahl 1200). In Fortran, the 2-D (radix 2) FFT has
been recorded at 242 MFLOPS for certain large dimensions [3-11]. The maximum value in
Fortran will not likely exceed 267 MFLOPS for any size. The reason for this is simple,
the Fortran standard for complex numbers is to store real then imaginary parts
consecutively in memory. The FFT aigrithm requires the real parts and imaginary parts
to be accessed separately. Thus, at the very best, data will be manipulated with a
stride of two or more. On the VP-200, this requires a loss of one path to memory.
(This is an anomaly of the architecture.) However, if the FFT were defined by real
arrays storing real and imaginary parts, respectively, the performance could be greatly
increased. Again, what is required is a general standard interface and manipulation of
data to be handled in whatever fashion is best for the target architecture.

The above discussion supports the following premise:

Premise 1. Architectural sensitivity in computation can transcend the
domain of the Fortran compiler.

Probably the most striking way to illustrate the complex relationships among
architecture, algorithms and compilers, is to hold as many variables fixed as possible.
To that end, we will examine seven computational kernels (i.e., simple one or two-level
Fortran loops) on the CRAY-i and the CRAY X-MP. The kernels are given below:

1. SAXPY

2. CAXPY - same as the SAXPY only in complex form

3. Sparse SAXPY - Figure 3-8

4. Inner product (dot product)

5. ISAMAX - find the maximum component of a vector

6. Matrix multiply

7. Complex FFT (entire algorithm)

In order to display performance, the two-dimensional domain (introduced in Chapter 2)
will be used. Figure 3-20 displays the near optimally coded kernels for the CRAY-l. It
can be observed that Loop 1 is inferior to loop 6 for a dense vector operation (for
reasons described earlier). Loop 3 is observed to be nearly scalar in both its peak
performance and its relatively small NI/2. Nevertheless, Loop 3, which was discussed at
great length earlier, is coded roughly 3-times more efficient than the compiler versio:,.
It is also worthy to comment that Loop 5 suffers from being a vector to scalar type loop
riddled with compare operations. Loop 5 is often employed in pivoting schemes in matrix
decomposition algorithms. Loop 6, obviously coded optimally, displays the high
performance achievable with the "right" matrix multiply. This is three times more
efficient than the usual Fortran.

- _M- _ - ,,, . .

200 ----- F-CAL kernels

1. SAXPY
2. CAXPY

7 3. Sparse SAXPY
100 24. Dot product
80 4 5. ISAMAX
806. Matrix multiply

so 1 7. Complex FFT

Mt lops
3

20

103
F10 20 30 50 80100 200 300 500

N 2

Figure 3-20
Seven Kernels - CRAY-l

Figure 3-21 displays the same loops on the X-MP line. There are several ((-MP types.
The older X-MPs did not have gather/scatter operations, consequently the sparse -oop
(Loop 3). performs almost as poorly as on the CRAY-i. The newer X-MPs (

9
.3 nanosecoond

clock) has loop 3 performing at a much higher rate with a larger N(/ 2 , 90 MFLOLfS and 4",
respectively.

200 - 6 41-------r CAL kernels

o72 1.SAXPY
.7 I 2. CAXPY

3. Sparse SAXPY
100 _- -- -- - -- - 4. Dot product

10 nw 5. ISAMAX
80 --- -- 6. Matrix Inwtiply

* I 7. Complex FFT

MI lops 50

30 5

20

10
10 20 30 50 80 100 200 300 500

N 1 /2

Figure 3-21
Seven Kernels - CRAY X-MP

Fig'ure 3-22 displays the CRAY-! and ((-MP fur compar'scn. Note the startlir3 Jiff, :ence
between the s:ew N-MP and tho CRAY-: . The only diffei-ence in c,'e speeds is _

faster X -MP clocek. Yet, the performance differences are significantr> ' teater. Nt
that Iloops 1, 2 and 4 have become very high performers ;.n t).e ((-MP, while thywere poor
on the CRAY-l. This leads to the following premise:

Premise 2. A -goo' QDip'Ati:;na. xerneo on .nc, zompiuto ray L,

kernei on anotner.

200 6 1 4 CAL kernels

~ 2 1. SAXPY2. CAXPY

1001 No 3. Sparse SAXPY
7 3 (new) 4. Dot product

80 5. ISAMAX
1 46. Matrix multiply1 4 7. Complex FFT

50 5

1010 20 30 50 80 100 200 300 500

N 1/2

Figure 3-22
Seven Kernels - CRAY 1, X-MP Overlay

Recall, that in all three kernel figures, the optimal algorithm was selected and coded
in Cray Assembler Language (CAL). In Figure 3-23, the X-MP CAL code performance
polygon is overlayed wiLh thc Cray Fortran (CFT 1.13) implementation of these same
algorithms. The 1.13 compiler has been substantially improved over the years by 1.14
and 1.15 versions. However, CFT 1.13 was the best available for a number of years. In
fact, some applications have faster execution speeds on the 1.13 compiler than the newel
compilers. These applications probably are not benefitting from the superior
optimization capabilities of the newer compilers. From Figure 2-23, one can easily note
the poorer performance of the compiler over assembler. In fact, loops 3 and 5 are not
even on the chart. This is not surprising at all. It takes over 5 years for a compiler
to mature. In 5 years a new architecture is obsoleted by a new one. Therefore, one can
conclude that if the compiler is efficient, the machine is obsolete! These facts lead
to the following conclusion:

Premise 3. Compilers can seriously degrade potential performance on
newly introduced computers.

200 64 4 CAL kernels

2 11. SAXPY
2. CAXPY

2 3. Sparse SAXPY
I 6 3(Iew 4. Dot produc

80 5. ISAMAX

7! FT 6. Matrix multip'y
7. Complex FFT

50

Mflops

30 - --- o

',, Fortran

20 , _

10 o 20 30 50 80100 200 300 500

t4,l) N 1/2

Figure 3-23
Seven Kernels - CFT 1.13

What, then, are the implicacions of the premises proposee?

Premise 1. Architectural sensitivity in computation can
transcend the domain of the compiler.

Premise 2. A "good" computational kernel on one computer
may be a "bad" kernel on another.

Premise 3. Compilers can seriously degrade potential
performance on newly introduced computers.

One principle seems clear. Total dependenze on Fortran (and other sequential compilers)
compilers as a means of program optimization is not wise. Since software production
programs survive several compilers in various stages of maturity, the reliance on
compilers for performance is bound to result in varying performance results. Since
proper algorithm selection is dependent on sound computational kernels, and since the
proper kernels may be different for different machines, the only hope is to interface to
the hardware much higher in the complexity of the modeling process than available at the
compiler level.

In designing applications programs on modern computing machines, there are often
stages of modeling and implementation that result in a "running code." This modeling
hierarchy proceeds from the physica model to the computer object code in all or some
uf the following stages:

STAGE 1: THE PHYSICAL PROBLEM

STAGE 2: MATHEMATICAL MODEL

STAGE 3: COMPUTER MODEL

STAGE 4: SPECIFIC ALGORITHMIC APPROACH

STAGE 5: THE PROBLEM INPUT MODEL

STAGE 6: THE FORTRAN IMPLEMENTATION

STAGE 7: SYSTEM OR OTHER COMPILED LIBRARIES

STAGE 8: ASSEMBLER AND OBJECT CODE

A lengthy description of each stage will be avoided. The reader can probably fill in
details from past experience. Basically, the physical world is being modeled by a set of
mathematical laws which are cast in numerical (discretized) algorithms. Many times
existing modules (such as linear equation solvers) are used as tools in building the
computer model. The problem definition, itself a data model, will be abstracted by
input procedures. For example, in a computational fluid dynamics code, the wing or
airplane must be modeled by surface approximations, which in turn interact with the
computational model. The final implementation is done through a higher level
language, most probably Fortran. The Fortran compiler uses tools such as libraries
for elementary functions and the like. The final output from the compiler is a very
machine specific set of instructions in assembler or object code.

For mary years the impact of changing the computing ha-dware was confined to stages 6,
7, or 8. In other words, the accommodation of a aew computer imto the modeling
hierarchy generally had little impact "above" the Fortrar. level. A new computer meant
that the application programmer would have to convert to a new brand 3f Fortran. Once
converted, most of the impact of the new hardware was accommooated by the operating
system and/or compiler. Now, in dealing with supercompvuters, the issues of efficiency
go well beyond the confines of the compiler. Moving to a new computer can have, and
has had, impact in all stages of design. Even if the the physical model isn't changed,
the algorithms used, the mathematical models, and range of the physical model
parameters are often impacted. Accommodating new hardware was once the domain of the
operating system and compiler and is now a more fundamental issue. To whatever extent
this is a problem today, it wili te accentuated by the increasing use of
parallelism in hardware design in :he future.

These facts saggest a new approach to computer code design that attempts to transcend
the confines of Fortran when developing cr converting existing programs to vector
processing. Figure 3-24 illustrates the concept of moving the boundary of the interface
h-tween models and hardware higher in the complexity mf the m doling hicrarchy. This is
done by relying on a set of standard computational building blocks, or kernels, that
have two properties:

1. They are extremely important in application programs in that they
often consume most of the CPU time in the algorithms or
processes that use them.

2. Their performance is extremely sensitive to architectural features.

AWL -A00010

N

The basic approach is to build the application model from higher level algorithms
whenever possible. Standard libraries of tried and true computations exist at most
locations, industrial and academic. (For a rather thorough description of quality
library software see [3-71.) The next step is to provide, to both the library developers
and the applications programmer, a set of optimized computational kernels. The
important feature of these kernels is not only speed but standardization. They should
exist on all computers being used for scientific computation whether scalar or vector.

Application , 'S
programs "::

! Math libraries

Figure 3-24
Moving the Hardware/Software Boundary

In addition the functionality of such kernels in new hardware environments should be
assured. This could be done by having two versions, one optimized for a particular
machine, and another in a portable language (such as Fortran or C). These interfaces
should be standardized, and they should be coded in an optimal form using the best
computational strategies for the various target computers. This is not something
scientists should be burdened with producing. In fact, this is no different than the
sine or cosine routines provided by the compiler. There are very few scientist today
who can, or wish to, code appropriate and accurate algorithms for elementary functions,
yet all scientists use them liberally. The community of scientist exploring computation
in CFD, for example, should begin to identify and define important commonly used
computational algorithms and underlying kernels that are critical to common computation.
This will be discussed further in Chapters 4 and 5.

In practice the number of standard frequently used computations in science and
engineering is not that large. In later chapters kernels important to computational
fluid dynamics are discussed. By interfacing complex processes such as algorithms or
entire solution modules to basic architecturally sensitive computational kernels, code
developers can concentrate more on modeling, and computer/algorithm scientists can
concentrate on the proper implementation of kernels. The methodology is being used in a
number of industrial locations. The shortfall is that not all major applicaticn
programs are written in algorithmic modular form. Modularization is becoming more of a
necessity, however, due to the rapidly changing computer environment.

There are many examples of the efficacy of this approach. one example, has beer,
discussed in dc-ail. Recall Table 3-5 in Section 3.2.2 which shows a set of matrix
problems whose performance improved by a factor of 3 over the CRAY-I performance due to
the improvement of the sparse SAXPY computation on the two machines. The algorithm
software had been "interfaced" to the assembler coded sparse SAXPY kernel. This kernel
had been developed and optimized separately. On conversion of the algorithm to the X-
MP, nothing was done except to replace the kernel library called by an optimized X-MP
version. Had this been done in Fortran, the performance on the X-MP being used for
these tests, would have yielded only a 25% performance improvement in the kernel and
negligible improvement in the algorithm. Why? At the time, the test was run, the
latest CFT compiler was 1.13 which did not utilize the important "new" gather/scatter
instructions. Thus, the code optimization "transcended" the compiler optimization
level. Even new compilers have trouble "recognizing" the sparse loop, and often must be
directed to vectorize them due to possibility of recursion which only the user can rule
out.

Another example of the possible improvement to entire programs is given in Figure 3-25.
The application is a large Kalman filter modeling program used in guidance and control
systems. It was divided into three computational sections and a large input/output
section. In fact, only 10% of the lines of Fortran accounted for the over 95% of the
performance. This is indicated in the figure by bar labels: matrix operations,
transition matrix, and noise matrix. The other 5% of the computer time was spent in the

A-

82

section labeled other. The percentages given at the top of the bars in the graph,
indicate the percentage of CPU time was spent in the module by the original program
fully optimized by the Fortran compiler (CFT 1.11 on the CRAY-i.)

2.0 81%

31.4%

1.40

12.5%

MIE

5.1%

26.1% H21.3%
0.00 ,Im.I.I.

Matrix m s Transion m Nrix M0a rx Other

Figure 3-25
An Application Program

The shaded bars indicate the percentages after the code was enhanced by replacing
Fortran coding with optimized kernels trom Vectorpack [3-14]. This replacement took a
few days labor in order to isolate the computations in a rather unstructured Fortran
program, typical of production programs. The result dramatically reduced the CPU time
in each major computational module. The entire program ran 8 times faster than the
original Fortran optimized program. This program was optimized via computational
kernels. Several years later it migrated without change to a CRAY X-MP where these same
standardized kernels were provided, but optimized to the X-MP. Consequently, this
optimal, better than Fortran performance, was maintained without user intervention.

************ IMPORTANT CONCEPTS **********

o In the examination of important computational kernels, three empirical
observations were supported:

- Architectural sensitivity in computation can
transcend the domain of the compiler.

- A "good" computational kernel on one computer
may be a "bad" kernel on another.

- Compilers can seriously degrade potential
performance on newly introduced computers.

o In scalar computers, hardware evolution was largely the domain of chip
technology, causing little impact in applications beyond the compiler End
operating system. In vector computers, the impact of subtle architectural
features can impact computational kernels, algorititns and oven entire
applications. This, coupled with the rapid growth in computational power, cin
have ramifications at the modeling level as well.

" :t has been observed that compilers seem to take 3-5 years to nature. It also
can be observed that supercomputers are obsolete in 3-5 years. One can
conclude that compilers of the Fortran variety cannot be relied upon, solely,
as a tool for optimization.

3.4.3 The Role of Languages, Compilers, Preprocessors

The general topic of computer languages is well beyond the scope of this treatise. The
attributes of a "good" computer language are debated continually. In
engineering/scientific computing the dominant language force has been, and for the
foreseeable future, will be Fortran. At this point, the dominance of Fortran has little
to do with its merits, and more to do with its position as the support language for

- - ' .. . ~ d, l ,, ml l l i~l i lii i iiiA

83

programs that fuel scientific technology world-wide. The person years of investment for
development and maintenance of this software is difficult to estimate, but is enormous.
For a major oil company or aerospace company to convert its production application
programs to another language would be cost prohibitive. It is not likely any language
or computer/compiler combination could prove to be so valuable as to cause such a
conversion. Even if a conversion is undertaken, large production programs are only as
useful as they are reliable. Newly converted programs lose that validation from the
tests of repeated daily usage. This will always be the biggest deterrent to code
optimization. New languages can become useful as new programs are developed in them.
Yet no language seems to have achieved a substantial foothold in new development
projects of import. This situation may change. In fact, if we are ever to aspire to
harness massive or large degree of parallelism, it is likely that new languages could
hold the solution. However, such a process could take decades, and the current issue is
how to effectively compute on today's machines. For these reasons, this section will
predominantly deal with Fortran, its extensions, and preprocessors. In fact, when the
term compiler is used, it will generally refer to the Fortran compiler.

Historically, the higher level language was a method of programming the computer through
a more user friendly "language" than the machine language or assembler (which are simply
the instruction sets of the hardware). The efficiency of the language was a function of
the translation of the higher level syntax into the most efficient sequence of assembler
instructions where efficiency was essentially measured by maximizing the instructions
per second. Algorithm efficiency on scalar computers was simply a matter of minimizing
the number of adds and/or multiplies in the process. The algorithm developer and the
compiler optimization process were rather separate entities (with the exception of the
obvious overlap of elementary functions, e.g., SIN X.) With the advent of pipelined
arithmetic units, and more recently, vector instructions the two fields have become
very intimately related. On the one hand, armed with some knowledge of how the compiler
may, or may not, assign vector instructions to a syntax, the algorithm developer can
"write" very efficient Fortran on a vector computer. On the other hand, with some
knowledge of the "intended" use of certain syntax, the compiler writer can achieve a
tremendous improvement in instruction sequencing or vector instruction selection. The
natural outcome of these facts has been a growth of appendages to Fortran such as the
following:

Vectorization directives
Vector syntax
Interactive compilers and user directed optimization
Preprocessors

It is important to understand how these artifices work, for they can indeed improve
performance. One must realize, however, that at best these are attempts to accommodate
the fact that Fortran cannot recover from algorithmic and architecture conflicts. The
compiler can aspire to achieve the highest efficiency for a given computational kernel.
If this kernel is a poor computational tool for architectural reasons, the compiler or
extensions cannot compensate. Ultimately, optimization rests in the hands of the code
developer. It is not unlikely that in certain situations the compiler can achieve
several factors improvement in performance through optimization techniques. It is,
however, possible that a factor of 4 or 8 can be achieved by simple kernel optimization
and even more with modeli., changes.

In Section 3.3 the term "vectorization" was defined in terms of percentage of CPU time
spent in vector unit execution. Compiler optimizers generally must deal at the
instruction level and optimize performance based on the premise that vector instructions
are to be substituted for scalar instructions whenever possible (with perhaps an
identified set of exceptions). More modern compilers are attempting to involve the user
through interaction providing statistics and asking questions to gain more information
than can be discerned from the syntax. Finally, some compiler efforts are beginning to
make compilers that implement decisions at rLn-time in an effort to test on data
parameters that are not usually known at pre-execution. It is perhaps worthwhile to
give a few exampl.es of straight forward optimization capabilities, more elaborate
optimization, and predictions of future compiler optimization capabilities.

Supercomputers rely on vector operations for pipeline or parallel computation
efficiency. This is not an accident, but a result of the observation that scientific
programs often use vector constructs in Fortran. The most common is the simple DO loop.

DO 10 I = 1, N
X(I) =Y(1) , Z(1) (3-5)

10 CONTINUE

This loop is equivalent to a simple hardware vector instruction on most vector
computers. It is easy to "recognize" and easy to systematically translate into a vector
instruction. In fact, most compiler writers have little trouble in translating this
loop to optimal code for the target architecture. Unfortunately, Fortran application
programs are often contain optimization prohibitors such as IF-tests, subroutine calls,
GOTOs and recursion. Many compilers simply evolve with time and hardware vendor
experience to recognize patterns and excepticns/alternatives to the standard compilation
process to improve the optimization results.

J! ~~ ~11 .. . -...... . - -A --,, -' !
h -__ ,,, -- mo "'"--ft

\

84

The basic tool which compilers use is dependency analysis. If vector inputs are
independent of the vector result, a vector operation can be employed. The historical
approach has been pattern matching, but more recent compilers are using algorithmic
tools to discover and analyze dependencies. An obvious dependency is recursion:

DO 10 I = 1, N
X(I-I)

=
Y(I) + X(I) (3-6)

10 CONTINUE

This loop is not vectorizable because of dependency of the output on the input. (Note:
the NEC machine can vectorize this loop. Therefore, for that machine simple dependency
analysis does not rule out the possibility of further optimization. Further analysis
can be done.) It is not difficult to imagine an example where the compiler would really
benefit from some user knowledge that cannot be discovered analytically. For example,
consider the loop:

DO 10 I = 1, N
X(I+J) = Y(I) + X(I) (3-7)

30 CONTINUE

The vectorizability of this loop is dependent on the variable J. For example, if J=0
this loop is vectorizable in the traditional sense. However, if J is, say, larger than
N, this loop can be vectorized. For this type of situation, many compilers today allow
for user directives to "force" vectorization. Many compilers also inform the user which
loops can or cannot be vectorized, and some compilers even allow for tuning during an
interactive compilation processes. Probably the most publicized compiler optimization
in supercomluting has been the so-called IF-test optimization introduced by the Japanese
manufacturers, first by Fujitsu. One of the more frustrating constructs to compiler
optimization process is the IF-test. This instruction pervades common Fortran programs.
The following is an example of such a loop:

DO 30 I = 1, N
IF (X(I) .GT. EPS) THEN
Z(I) X(I) + Y(I)*S (3-8)

ELSE
Z(I) = 0.

ENDIF
30 CONTINUE

IF-test optimizing compilers face the same choices discussed in Section 3.2.2, where a
similar situation was studied in detail. Depending on the success ratio of the IF-test
several courses of action can be taken. Most supercomputers, today, have the option of
mask vectors (vectors associated with bit control vectors to indicate yes/no or
true/false corresponding to component position), list oriented gather/scatter
operations, and simple scalar approach. None of the vector options, however, are simple
vector solutions. For example, if the "success ratio" were 50%, then the loop would
split into two vector loops with half the vector length. The best optimization might be
to use a mask vector to split the loops and full vector computation in each loop. Thus,
for the example above, there would be a vector loop (length N) to split, a v t:r loop
(length Ni2) to compute the SAXPY, and a vector loop (length N/2) to set X to zero.
This is hardly a desirable optimization in the sense that a single vector loop of
length N is all the ccmplexity that may be required if the larger process were analyzed.
The situation is much more complex than this. How does one know the success ratio of
the IF-test? IF success ratio were almost always 100% one could perform a different
type optimization. To aid in this processes some compiler environments allw the user
to gather statistics, input suggested success ratios, and otherwise interact with the
compiler. This, unfortunately, is problem dependent, and very little definitive
optimization could really be accomplished except on a fixed problem. (After all most
"benchmarks" are a fixed problem!) Viewed in this manner, IF-test optimizers are very
good vendor benchmark tools, and not necessarily good approaches to program
optimization.

Table 3-5 lists manufacturers and their compiler options in the area of ccmpiler/user
features. The "User Directives" column indicates that the compilers allow the user to
force vectorization in areas where the compiler may not be able to determine possible
independence of vector components as in Loop 3-7. "Interactive Tuning" indicates that
:he compiler allows user interaction during the compilation process, and provides
information to the user about possible optimizations which requir more information
about. "IF-test Optimization" is a compiler vectorizing feature that provides some form
of vectorization of DO-loops with embedded IF-tests. This is more effective if the
compiler also allows user interaction in the optimization of these IFs (subject to 1he
caveats previously discussed.)

5

Compiler Optimization

USER INTERACTIVE IF-TEST
DIRECTIVES TUNING OPTIMIZATION

MANUFACTURER

CRAY yes no yes
CYBER 205 yes no no
FUJITSU yes yes yes
HITACHI yes yes yes
NEC yes yes yes
IBM no yes yes

TABLE 3-6

AS compiler vectorization becomes more sophisticated, compiler optimizers are looking
beyond the simple inner-DO-loop. For example, on several machines we have discussed,
there is a degradation due to non-unit stride. [On the IBM 3090/VF the degradation is
due to a potential increase in cache hits. On the CYBER 205, it is due to the hardware
instruction itself, which is defined for contiguous vectors only. For the Fujitsu VP-
200, a stride operation loses a path-to-memory. The CRAY-1 has only one path-to-
memorl.] Consequently, the following loop has a number of possible optimization
challenges on various machines.

DO 10 K = 1, M
DO 10 I = 1, N

X(K,I) = X(KI) + Y(KI) (3-9)
10 CONTINUE

Some compilers (e.g. Fujitsu VP 200) are "smart" enough to recognize that the inner loop
is ranging over the rows rather than columns. Under legitimate circumstances the loop
execution is interchanged. Most programmers would not code this loop today because of
increased awareness of this degradation. Another problem which compilers can address
can be explained using loop 3-9. Quite often the length of vectors in the inner-loop
can be very different than the vector lengths in the outer loop (e.g. M >> N). In this
case the longer loop should be executed in the inner loop to achieve greater performance
(i.e. operate closer to the asymptotic maximum.) This however, is a run-time decision
unless M and N are known constants at compile time. In addition, for a loop as simple
and pristine as loop 3-9, some compilers can recognize that the following loop is
equivalent and compile one vector instruction of length M*N rather than M instructions
of length N.

DO 10 I = 1, N*M
X(I,l) = X(I,l) + Y (1,1) (3-10)

10 CONTINUE

Other compiler techniques can be important, and not all compilers employ enough
sophistication to use them. Figure 2-20 in Chapter 2 showed a technique for path-
optimization by splitting a loop into processing half vectors rather than full vectors.
If the vectors are long enough the extra number of vector startups, due to the doubling
of vector instriction issues, can be negligible with the gain. This "trick" is not
often employed ty compilers. Nevertheless, the resulting 50% asymptotic improvement is
not insignificant. Quite often compiler optimizations are merely the correction of poor
coding practices. In such cases the compiler can improve performance. (Such
improvements may give one a sense of false security.)

A number of loop forms are now handled by compilers. The obvious ones such as SAXPY and
inner-products are optimized by most compilers to use vector instructions. The
sophistication in some compilers matches the sophistication of the instruction set. For
example, on the Fujitsu VP-200 the following loop is translated to efficient vector
instructions available in the hardware instruction set.

DO 10 1 = 1, N
VMAX = MAX(VMAXPMI(I)) (3-11)
VMIN = MIN(VMIN,PM2(I))

10 CONTINUE

Each manufacturer will improve compiler optimization over time. Early compiler efforts
were riot very ambitious. As a consequence a number of commercially available
preprocessors were developed. They essentially did the compiler's job better.
Unfortunately, use of preprocessors sufficiently complicates the software development
process, and their widespread use was generally avoided. Today successful hardware
vendors devote greater effort to compiler technology and eventually out-perform the
preprocessors. In fact vendor compilers eventually utilize every flexibility built into
the hardware. For example, the CRAY-2 provides for local memory of 16K words. This is
more of a generous register set which is easily accessed by the vector units in

86

contiguous storage mode only. Initial CRAY-2 compilers did not use this feature. In the
future it will be used more aggressively to ameliorate the effects of the single path-
to-memory. Similarly, a feature like variable vector register length on the Fujitsu
series, can be a tool for optimization. The initial compiler efforts set the register
length to a fixed length, say 512. If one were processing a loop of length 600, this
would be done in two slices, one of 512, and one of 88. Perhaps this could be optimized
by performing three slices of length 200, or by one slice of 600. In each case the
registers must be reconfigured which halts all processing for one or two cycles. Thus,
the benefit of reconfiguration has an overhead.

What can we expect from compilers in the near future? The biggest near term improvement
will probably come from run-time optimization. This has been alluded to several times.
Quite often, it is not until execution that certain facts about loop characteristics are
known. At the small exoense of longer compilations, and space for compiled options
executed aclrding to run time decision, a tremendous improvement in performance could
be attained. The biggest language challenge of the future will be parallelism which
promises to be much more difficult for traditional Fortran to accommodate in an
automatic manner.

** ** IMPORTANT CONCEPTS *

o The sophistication of optimizing compilers is increasing

- Simple loop optimization is common place.

- Nested-loop optimization is being performed by some compilers.

- Interaction with the user is being provided enabling the compiler to gain
more information about the program, and enabling the user to learn where
the compiler is having trouble optimizing.

- A likely new area of improvement will be run-time checks of critical data
required to optimize. This data, such as loop parameters, is not
available at compile time for it is problem depended.

o Compilers cannot make algorithmic decisions!!!

3.4.4 Throughput and I/O

Up to this point we have concentrated on the internal function of the computer.
Experien'e dictates that the value of a supercomputer is really a function of "turn
around." One often hears of users who are willing to have a program run days or weeks
if necessary to get a new result. These types of users are rare in the total economics
of computing (super or otherwise). Most technological programs are required to aid in a
bigger process, such as research or design, where the human (the scientist or engineer)
is an integral part of the process. For the most part there is a fundamental period of
response time for which results are required. For example, if a scientist cannot get
results within a 4 to 24 hour period, he or she will tend to simplify the computation.
To study throughput, then, is to study the total turn around time of a job. There are a
,umber of factors outside a single user's control such as the job stream and queuing
lgorithms employed. These topics will be avoided here, but are of specific interest

with respect to parallel CPUs. This will be discussed briefly in the next section. For
a single job, one can divide the processing into the following steps:

Input
Execution
Output

Quite often an inordinate amount of overall time is spent in input and output. This can
be dealt with ii. many ways. As computing sophistication increases, more of the input
model will be automated and less of the output in raw data will be required. The real
issues are within the execution phase, an area that has been traditionally disassociated
with I/O. We are speaking of data movement associated with calculation. In subsequent
chapters, it will be observed that an important performance issue in algorithms for
computational dynamics is memory and data management. The data required to define the
mathematical discretized problem (with boundary data) is often dwarfed by the
intermediate data generated during the computation. For state of the art problems the
combined memory data requirements often exceed the largest memories. Since conventional
disk technology is too slow for modern supercomputers, a real performance bottleneck can
arise. To illustrate the range of performance improvement that can be achieved with
faster secondary storage, an example from structural analysis is given.

In Chapter 2, Section 2.2.3, the notion of secondary storage was discussed relative to
disk storage speeds. Consider a CRAY X-MP/24 (i.e. a 2-CPU system with 4 MW of real
memory) with an additional 128 MW-SSD. A traditional approach to computing large
structural analysis problems, is to use a direct matrix factorization algorithm that

takes advantage of limited real main memory. (See [3-12].) This has been a traditional
approach in this field enabling the solution of problems that require more data than can
fit in the real memory available. The intermediate data generated is written to disk or
secondary storage, if available. The statistics, given Table 3-7 reveal the
effectiveness of having a fast secondary storage device even if it is volatile.

Data Movement and Throughput: An Example
Structural Analysis - CRAY X-NP/24

X-MP X-MP
NO SSD WITH 128 MW SSD

I/O DISK 1,112 MW 295 MW
CP TIME 1.6 hrs 0.7 hrs
TOTAL WALL CLOCK 19.0 hrs 1.1 hrs.

TABLE 3-7

The most important figure in the table, is the wall clock time. The dramatic reduction
in this figure afforded by the use of SSD can change a job from being less than a
practical research tool to a few hour investigation. The productivity of the user is
greatly enhanced. The same is true for adding more real memory. However, when the
total system memory is increased, as dramatically as it was in the release of the CRAY-
2, whole new realms of modeling become practicable. The CRAY-2 will provide valuable
insight for all manufacturers.

********* IOIMORTANT CON EPTS '

n Data management is one of the most critical aspects .f high speed computation.
When the data exceeds available memory, I/O management becomes a critical
performance factor.

o Conventional disk technology is not keeping pace with other aspects of computer
technology. Thus, secondary storage has become a potential critical bottleneck in
modern computing.

0 A computer design issue is currently unresolved. Is the expense of large
monolithic memory justified, or is a tiered memory structure adequate for most, it
not all applications?

3.4.5 Parallelism: Top Down or Bottom Up?

Will parallelism, in the form of multiple CPUs, become a mainstay architecture in
supercomputing? The answer seems to be a certain yes. The question seems to be more
one of degree and timing. The critical issuE is software and the ability of
researchers, scientists and engineers to produce applications programs that can fully
utilize this type of computing architecture. In tiis section we will briefly discuss
software issues related to the use of parallel-CPUs in supercomputers.

The use of pipelined arithmetic units has created the possibility of improving
computation by a factor of 10 or 20 over scalar performance with comparable chip
technology. As software has been able to accommodate the changes required by "vector"
computing, the improvement in performance has crept closer to this potential. In a
similar fashion, parallelism offers a potential for performance improvement. A 16-CPU
vector computer offers the combined potential of 16*20 (320) times the performance
improvement of a scalar computer with comparable chip technology. To illustrate
consider Figure 3-26 below. The figure illustrates ideal performance improvement from
parallel CPUs with no degradation due to memory conflicts, synchronization overhead, or
contention for system resources. In addition, it is assumed that ideal vector speedup
is attained on 100% of the code using vector lengths well beyond three times N11 2. ideal
though it may be, the result illustrated also depends on a critical factor, parallel
decomposition of software and underlying algorithms. Once again, the promise of this
potential resides in the domain of software (operating systems, compilers, algorithms
and application programs).

SAL-

E : :

X

E :

T

I :

0

N

T

£ : :

E

SCALAR SCALAR VECTOR PARALLEL SCALAR/VECTOR
(10:1) (8-CPUs & 10:1)

Figure 3-26
Parallel and Vector Interaction

It is useful to examine the ways in which a relatively small number of CPUs can be used
to improve performance. There are three levels in which parallelism can be exploited to
improve system performance.

1. The job stream level: Given the fact that supercomputers and general purpose
computers often are used in a multi-user environment, system throughput can be
improved by allowing different jobs to run concurrently and independently in the
available CPUs. With only two (or perhaps four) CPUs, overall throughput can be
improved relatively easily (without user intervention) by the operating system. Of
course, this assumes that the individual jobs are not competing for shared
resources such as memory or peripheral devices. It is not likely, however, that 16
or 32 CPUs could be utilized productively in this fashion.

2. The job step level: A common throughput performance improvement technique in
scalar computers is to divide the job into subtasks (typically I/O, CPU, compile
etc.). This can be equally useful in a parallel environment. This technique can
be distinguished from user influenced actions (below) in that it can be automated
at the operating system level with perhaps help from the compiler.

3. Program level multitasking: At this level performan'e improvement is obtained
by decomposing a single program into subtasks that perhaps require cooperation
(synchronization and data exchange) among the subtasks. This type of job
decomposition seems to be an inexorable requirement in the effective use of
multiple CPU systems from 8 to 30 CPUs.

It is this third level that is the focus of software/algorithm technology today. Two
alternate, yet perhaps, complimentary directions have emerged in commercially availacle
systems. One approach is based on asynchronous (i.e., MIMD) utilization of parallel
CPUs. with this approach even inherently scalar (sequential) processes can be
parallelized. This can be characterized as top-down parallmlization. An example of this
approach is provided by multitasking extensions to Fortran provided by Cray Research on

their multiple CPU machines. Although the constructs are different, ETA Systems offers
similar multitasking tools. The other approach is a more bottom-up approach, which can
capitalize on highly vectorized code to orchestrate automatic parallelization at the
inner DO-loop level. An example of this is given by CRI's compiler related product
called "microtasking." This is similar in philosophy to what the Alliant Computer
Company has done with their compiler. Both of these approaches allow for automatic
parallelization at the DO-loop level. The main criticism of this bottom-up approach is
that it does not really require parallel CPUs from an architectural point of view.
Similar improvement could be obtained by introducing multiple arithmetic units
(pipelined or scalar) into a single CPU.

The two techniques, discussed above, are not mutually exclusive and could be combined to
achieve greater performance. As a hypothetical example, imagine a 16-CPU machine, with
each CPU, itself, a vector architecture (e.g., a CRAY-3). One could employ a strategy
of decomposition of an algorithm into four main synchronized subtasks. Quite often it is
easy to recognized three or four relatively independent (and equally complex, tasks high
in the program structure. Assume each subtask is generally utilizing long vector
operations. One could cluster 4-CPUs to each major task using a top-down approach.
Within the four clusters of four CPUs, one could employ a bottom-up approach breaking
the long vector processes into four identical vector process spread across the four
CPUs. The vector lengths would be one quarter the original length. (With some luck
there might be a local nest of DO-loops allowing a group of vector operations to be
spread among the four CPUs with no vector length degradation.) This hypothetical
situation is probably quite likely to be utilized on the CRAY line. In fact, CRAY users
are already experimenting with macrotasking (top-down multitasking) and microtasking
(bottom-up multitasking) interaction.

MACROrAS,(ED EZ E i MACROTASKED

MICROTASKED

MICROTA'KED M CROTAS1KD

MACROTASKED Li L] BMACR0'ASKEt
k MKCROTASKEO

Figure 3-27
Hypothetical Example: Macro- and Micro-tasking

As simple as the above scenario is, several complex decisions must be considered. The
first is Amdahl's law for parallel computers. (Refer to Amdahl's law in the glossary,
Appendix A.) The fundamental penalty for parallelism of the variety being discussed, is
overhead for synchronization and "wait time" due to resource contention. When these
overheads are large, it becomes hard to capitalize on performance improvement unless the
"granularity" is also large. The term granularity refers to the "size" (measured in
time) of the subtasks. We have previously alluded to the overhead of vector operations
due to the startup time. Vector length is analog,s to granularity. The longer the
vector, in a sense, the greater the vector task's granularity; consequently, the more
productive the vector operation, since the overhead of startup time is amortized over a
larger time slice. In a parallel environment, the overhead for task starts is constant.
Therefore, if a computational task is being performed by 50 tasks, the overhead is 50
times a single task start. Thus, one would strive to have the computational task being
performed large enough to absorb this overhead. With these two overhead concerns
consider the following Fortran loop:

DO 10 I = 1, N
DO 10 J = 1, M

A(I,J) = A(I,J) B(I,J) (3-12)
10 CONTINUE

In a parallel vector environment, a number of options exist. First, the loop could be
executed as follows:

90)

DO 10 1 = 1, N*M
A (I, i) = A (I, 1) * B (I, 1) (3-13)

10 CONTINUE

In fact, a good vector compiler will make this optimization. The parallelization of
loop (3-12) could be accomplished by spreading the outer-loop to the available
processors each of which would have the inner-loop available for vectorization. Several
questions come to mind:

What if the overhead for so many processes is too great?
What if both microtasking and macrotasking are available?

Which should be used? Or should both be used?
What if M is very small and N is very large?

Some of the answers are fairly obvious once overhead characteristics are known for both
vector, macro-, and micro- processes. These considerations will be fundamental to the
discussions and examples in chapters 4-6.

Ijmact on Applications

The modest parallelism found in current generation CRAY computers has offered early
experience with parallelization of large application programs. More is being learned
from mid-range parallel processors such as Alliant, ELXSI, Sequent and others. However,
CRAY machines are running the most ambitious ±arge-scale application programs. Chen
[3-133 offers the following statistics.

Application Performance

(4-CPU CRAY X-MP)
PERCENT THEORETICAL ACTUAL

PARALLELIZABLE SPEEDUP SPEEDUP
APPLICATION

...
PARTICLE-IN-CELL 9i% 3.b7 j.48
WEATHER FORECAST 98% 3.77 3.55
SEISMIC MIGRATION 98% 3.85 3.45
MONTE CARLO 99% 3.85 3.75
LATTICE GAUGE 100% 4.00 3.77
SEISMIC 98% 3.80 3.50
AERODYNAMICS 99% 3.86 3.60

TABLE 3-8

These figures hold promise for the efficacy of parallelism. Some of the above
applications are notoriously easy to parallelize. Yet, the parallelization is done by
hand. Only four '-PUs are used, and yet the degradation due to syi.chronization overhead
is already apparent in several cases (nutably in the oil and aerospace applications).
What is the likelihood of automatic parallelization? What can be expected from 8 or 16
CPUs? These are important questions.

** * IMPORTANT CONCEPTS *

o Pipelined vector units offer the potential of a factor of 20 improvement in
computational performance over scalar architecture. Parallel CPus, say or. the
order of 16, offer a factor of 16 improvement. Combined, the two architectural
approarcies offer the potential of 320 times conventional performance.

o This potential is only realized through superior computational strategies utilizing
long vectors and low overhead task synchronization schemes.

o Parallelism can be applied at several levels

- job stream
- job step
- within the job step

o There are two approaches being used today:

- top-down (asynchronous MIM3)
- bottom-up (inner-loop parallelization, SIMD)

o over the long term, top-down parallelism ho~ds the most potential. Over the near
term, a combination of both approaches seems likely.

3.5 THE ART OF BENCHMARKING SUPERCOMPUTERS

Throughout this, and the previous chapters, a great deal of discussion has ben F - sd
on the differences, both in hardware and performance, among the supercomputers
considered. A methodology for using these computers in - fashion that promotes
efficiency and some degree of portability was also discussed. Much of the matetial
presented has a bearing on another aspect of computing, performance prediction. Many
organizations face the task of selecting a supercomputer in order to replace aging
computing equipment. A very common practice over the years to aid in this process has
been the "computer benchmark". This is a simple process. Select important programs or
job streams and "test" them on the candidate computers and compare results. The fact is
this process simply doesn't work in today's environment. Conventional benchmarking
methods often lead to spurious results. In this section we will discuss benchmarking as
both a topic of interest, and as a method to summarize much of the material presented in
Chapters 2 and 3.

3.5.1 Background

Computer performance evaluation has long been a challenging field. The problem of
predicting a computer's performance, either as an isolated system or relative to other
systems, is multifaceted. Selecting a benchmark suite is probably the most difficult
task anyone could face. This discussion is not about selecting benchmarks that
characterize job streams, but rather a discussion of how to design the benchmark to
effectively interpret the results.

The relation between the subtle architectural features of modern supercomputers and
the computational structures of application programs has been shown to be very critical
to performance. This relation is also very sensitive. A small architectural variation
can lead to a larger performance variation. Using mathematical terminology, the
benchmark process is can be termed an "unstable" process. That is, small variations in
the input parameters (such as machine characteristics, compiler performance, library
kernel software, and even application program input parameters) can result in very
large changes in performance. Consequently, even a simple matter of obtaining a
performance benchmark of a single application program can be very complex. Some
benchmarkers attempt to hold all variables constant and require that applications be
benchmarked without variation from system to system. As a result, the performance
penalty is as much as a factor of 8 or 10 slower than the true potential of the
computer involved. (Recall Figure 3-25.) What then is learned by taking a program that
will essentially be running at one eighth its true potential on a vector machine, and
using it as a performance measurement tool? What is learned by benchmarking an
inappropriate scalir program on a vector computer? Clearly, we reject this approach.

An alternate approach, to assessing computer performance quickly and "fairly", is the
through the use of kernel benchmarks such as the LNLL Fortran Kernels (3-151, or the
Argonne Linear Equation Kernels (3-1]. In fact, there are a half a dozen, or so,
kernel benchmarks commonly used in the government and private sectors for evaluating
computer performance. Years ago, when computer architectures were more monolithic (and
of a scalar character) the benchmark process was more stable, particularly at the
kernel level. (In those days, how may millions of instructions per second (MIPs) a CPU
could process was a valid rating of computational performance. Of course, MIPS have
very little application to vector hardware.) Another complication is that various
machines are better suited to some kernel computations than others. Consequently,
algorithm designers employ different algorithmic strategies on different machines,
even when computing similar higher level computations. Thus, performance potential
ca'.tot always be adequately tested by a single untouched "Fortran source". There are
many important machine dependent optimizations that compilers cannot handle.

Recently, the IEEE Subcommittee on Supercomputing and a National Academy of Science
Committee independently decided to investigate the benchmark process. The hope was to
recommend a method or set of benchmark tools. After some months several approaches
seemed to show promise, but the consensus was that this topic is so formidable that it
deserves a solid research investigation. In the discussion that follows some of the
problems in interpretation of benchmark results are examined.

3.5.2 The Impact of Hardware on Benchmarking

Table 3-9, below, indicates that architectures, even within one company's product
line (in this case CRI), can have a great deal of variation. These architectural
differences can have a tremendous impact on performance, and require compensating
changes by the system, compiler and/or user, if acceptable performance is to be
obtained. To appreciate this fact, let's examine the CRAY-I and X-MP data in the
table. The CRAY-i has one path-to-memory, allows for only regularly stored vectors, and
has more difficulty chaining operations than the X-MP. on the other hand the X-MP has
3- paths to memory, liberal chaining, allows for random vector operations via the
added gather/scatter instructions. The CRAY-i has a 12.5 nanosecond cycle time and the
X-MP has 9.5 nanosecond cycle time (recent models are 8.5). If these were purely
scalar machines, the performance difference would be 25% improvement on the X-MP.

92

Architectural Differences in the Cray Product Line

CRAY-1 X-MP(OLD) X-MP(NEW) CRAY-2

FEATURES

CLOCK 12.5 9.5 9.5 (8.5) 4.1

in nanosec.

CPU's 1 4 4 4

PATHS/MEM 1 3 3 1

VECTOR STORAGE REGULAR REGULAR RANDOM RANDOM**

CHAINING SLOT FULL FULL NONE

COLLAPSED SUM YES NO NO NO

MEM/WAIT CYCLES 11-13 14 14 55

MEMORY (MW) 4 4 4 (16) 268
..

**Note: even though the Cray-2 supports random vector storage

the underlying gather/scatter operations are 4 times
slower than the regular vector rate. This is not the
case on the X-MP

TABLE 3-9

Recall the 7 computational kernels examined earlier.

1. SAXPY - scalar times a vector plus a vector
2. CAXPY - complex version
3. SAXPYS - sparse vector SAXPY
4. SDOT - dot product
5. ISAMAX - finding the maximum component of vector
6. Matrix Multiply
7. Complex FFT

All these kernels were coded in near optimal CAL on the CRAY-i and X-MP. The results
in MFLOPS for large values of vector length are given below. (Also refer to Figure 3-
22.)

KERNEL CRAY-I X-MP X-MP (CFT 1.13)

1 50 isO 130
2 100 175 110
3 4 87 4
4 75 190 200
5 28 35 4
6 160 195 100
7 95 170 55

The above figures indicate that not only does the kernel behavior radically differ
between computers, but that reliance on Fortran could obv'ate the architectural gains
offered in the X-MP design.

In summary, the selection and use of proper computational kernels can make an
impressive difference in the performance of application programs. Furthermore, the
kernels themselves may require optimization that the compiler alone cannot be depended
upon to provide.

3.5.3 Interpretation of Kernel Benchmark Data

Probably the most quoted benchmark test kernels are the Argonne Benchmarks and the LNLL
"Livermore" Kernels (referenced earlier). The providers of these benchmark kernels are
experts- in their fel

1
d" and fully apvpciate the value and use oc 'he data generated

from these benehmarks. In the case of the LNLL kernels, there is a solid understanding
of the relation between ear:i. individual kernel's performance and important application
programs often used at LNLL. However, the reporting and use of these benchmarks by
manufacturers and "third party" performance evaluators has resulted in a great deal of
misinformation. (This is not the responsibility of the kernel developers, however.) It
is appropriate to examine the nature of the misuse of this data. In probing the
weaknesses in computer evaluation techniques, one can begin to formulate strategies to
improve the benchmark process as well as develop strategies to better interpret
published results.

The Argonne benchmark is based on one simple, yet often used, application, the solution
of linear systems. It is based on the subroutines found in LINPACK [7, one of the
most commonly used public domain software libraries ever written. The first problem
one encounters with kernel benchmarks, is the compiler. Does one wish to benchmark
the computer hardware or the combination of the hardware and systems software, such as
the compiler? In fact, compilers are so critical in this area that the original
distributions of LINPACK had the inner loops "unrolled" in order to provide scalar
compilers better opportunities to optimize. This "unrolling" is actually a negative
factor on vector computers, so the Argonne benchmark often talks of "rolled" loops
(which are the natural Fortran implementation). In addition, the Argonne benchmark
allows for manufacturers to report assembler "coded" inner loops. The difference
between coded and rolled performance can be substantial. For example, according to
refe-ence r3-i1, thc -. de ' X-. iates are i.es tia.s faster than the CFT r.Les f,-
systems of size 100. Another limitation of the CFT compiler is the fact that, on these
kernels, performance can be enhanced further by optimization of the first two levels
of nested inner-loops. This often requires a significantly different sequence of
operations. The Argonne report calls this the matrix/vector (MV coded) approach when
implemented in assembler.

With this as background one can observe many anomalies in reported results (not by the
Argonne report itself, but from misleading use of the data by others). For example,
in Figure 3-28 the results de lifted directly from reference [3-11.

10

MFLOPS

1-S X-MP 1CPU X-MP 4CPUs
Figure 3-28

Znrappropriate Use of Benchmlark Data

The information as to whether the results are coded or rolled, is omitted. This is
quite often the Kind of information presented by manufacturers comparing different
computer companies. The figure only contains CRI computers. At face value one would
conclude the CRAY-I and CRAY X-MP are of similar performance for a single CPU. The
"dishonesty" in our presentation of Figure 3-28 is that rolled and coded results are
being mixed. A rolled CRAY X-MP is not much better than a carefully coded CRAY-I, but
this is an apple and an orange comparison! Further one might conclude that 4 CPUs only
afford a factor of two improvement. While this is a true for this problem, it may be
quite misleading, as will be discussed.

Figure 3-28 gives the more "honest" presentation of the data, plus the larger problem
size of 300 is used with MV coded. This is a more honest test of the hardware because
the compiler deficiencies are eliminated by allowing more optimal coding. The problem
size more readily reflects the asymptotic rates attainable with larger vectors. A
completely different set of conclusions can be observed. The X-MP is two times faster
than the CRAY-IS, and the 4 CPU version (which runs at 480 MFLOPS) is almost three
times faster than the single CPU X-MP. This information is, in fact, in an appendix
of the Argonne report. At this point the reader of reference [3-1) might feel he has
got a handle on the performance of dense linear equation algorithms on the CRAY
line. However, reading still further in the appendix one finds another table, for
problem size 1000 -- with no constraints on the test. In this case the 4-CPU X-MP
runs at 713 MFLOPS, a 1.5 times faster rate than the rate achieved in problem size 300.

A&-

Ii2
\\\'

94

The larger problem size ameliorates (through larger granularity of tasks) the overhead
of the multitasking tools used. Whether macrotasking or microtasking was used is
not clearly stated. Thus, it is not clear as to whether the 713 figure is optimal.

5 100-FORTRAN

L
1 300-MV CODEL)

MffLOPS

IM 1-S X-MP ICPU X MP 4CPUs

Figure 3-29
Appropriate Use of Argonne Benchmark Data

What then is the proper data to use -- probiem size 100, 300, or 1000, coded or rolled
(or unrolled as distributed in LINPACK), multitasked or single CPU? The fact is there
are no definitive answers without a thorough knowledge of the ultimate use of the
data. Rating a computer's performance on one a~gorithm, -c matter how well understood
or implemented, is simply one data point on an infinite spectrum of useful
computational approaches in scientific computation. (Also note, in a similar vein,
when observing third party quotations of the Argonne data, one should be alert to
anomalies in data reporting. Is the presenter comparing computer timings from the same
Argonne report, latest compilers, coded or not, same problem size, etc.) The final
question is, obviously, does the Argonne benchmaik have any beaxtng on app itatijns L
be ultimately used by those seeking an evaluation.

In the quest for reasonable benchmark data it is logical to broaden the kernel set
to include other algorithms of importance to scientific computation. The LNLL
benchmark kernels are an example. Twenty-four kernel computations are provided.
They are executed with various loop sizes. Statistical information such as range,
mean, median, average rate, and standard deviation are reported for each loop. A
facility to obtain a weighted mean (arithmetic and geometric) for all loops is provided
as well. The developers have also gone further at LNLL by providing a carefully
instrumented weighted average that achieves the same NFLOP averages as observed in the
Lab's job stream. The value of this however, eludes this author. On the other hand,
and most importantly, in discussions with those who support these loops, one is quite
impressed by the apparent "connection" that is understood betwee', a particular loop and
the type of application it represents. If one can make such a "connection," then the
loop performance can be translated into truly meaningful information. This in fact, is
the basis of a methodology for benchmarking that will be discussed in the next section.
First, it is worthy to discuss some caveats in using the Livermore Kernels for
comparing machines.

First, the Livermore Kernels are Fortiai, beitc marks. Therefore, the results are not a
test of the machine, but a test of the machine and compiler. This is neither good nor
bad, simply one of the facts. Another caution is related to loop titles and possible
inferences drawn from these titles. For example, let's assume that an important
application uses algorithmic approaches that require frequent solution of tri-diagonal
equations. One may be inclined to carefully look at the data for Loop 5, called "Tri-
diagonal Elimination". In fact, there are important applications resulting from partial
differential equations that give rise to hundreds or thousands of such systems to be
solved in a single job. However, it is quite often the case that these systems are
independent and can be solved simultaneously. The inner loops of such a formulation
have little in common with the recurrence loop used in "Loop-5''. Very incorrect
conclusions could be drawn by the uninitiated. This, of course, is not a
condemnation of the Livermore Loops, but of their potential misuse. Another example
of a potential problem of Fortran-only b-..hmarkir c:an be obsezved oy Loop-24, "Find
location of first minimm in array" given below:

AA

95

LOOP 24: FIND MINIMUM OF ARRAY

X(N/2) = -l.OE+I0
DO 24 L = l,LP

M =1
DO 24 K = 2,N

IF (X(K).LT.X(M)) M = K
24 CONTINUE

Some high performance computers actually have machine instructions that can impl-ment
this loop in one or two vector instructions. The CRAY X-MP has the ability to
perform this loop in very concise set of vector instructions. The problem here is that
many compilers would find optimization of this loop somewhat difficult as written (even
with compiler directives). The same types of questions re-enter the discussion. What is
it one wants to benchmark, the compiler, or the hardware potential?

In an effort to assess "dusty deck" or "average" code, the Livermore Kernels
include Loop 15, "Casual Fortran.'' The code here is taken out of some "typical"
program. What does its performance indicate? Whose casual Fortran is it? Even if
Loop 15 is indicative of every day coding, is that what a benchznark is about? Perhaps,
but its importance is at best, only relative to the user's purpose and concerns. How
then is this loop to be included in statistics such as weighted averages.

In summary, kernel benchmarks are indeed important. In fact, as will be asserted, they
are a good start to ascertaining performance potential, if used properly. However,
cold benchmarking of kernels on hardware of different types without a clear
understanding of the architectural sensitivities and the connection to particular
applications is, at best, dangerous!

3.5.4 A Benchmarking Methodology

In designing applications programs on modern computing machines, there are Zften
stages of modeling and implementation that result in a "running code." Most of what
performance analysis (and hence benchmarking) is about, is assessing the performance of
the "running code" as it exists in its most stable production-grade form. As mentioned
earlier, what really is important, however, is to measure the potential performance of
the scientific problem as it could be implemented on new hardware. Somehow in dealing
with "vector" computers, this fact has been hard for many to accept. Consequently,
some organizations will make purchase decisions based on the benchmark process where
the ground rule is "hands-off the source," i.e., do not attempt any optimization other
than what the compiler can do. This approach is fortunately losing favor, and will
no doubt fall by the way completely as we move into the age of parallel (and
vector) CPUs. Compilers or systems that can effectively automate the process of
conversion and optimization in a parallel environment are many years away.
Understanding the steps in program design can perhaps help in understanding possible
approaches to benchmarking, both the program as it "iC" and gain insights into what
it "could be" on a new system (real or in design).

An approach to benchmarking computers, that isolates some of the anomalies discussed
thus far, can now be addressed. First, the key to the process is a thorough
understanding of the application program being benchmarked. The stages of its
development including important computational kernels and alternate computational
models must be understood. The "as-is" benchmark will provide an important data
point, but cannot be interpreted without individual kernel benchmarks. It is to be
emphasized, that providing benchmarking kernels in Fortran and in optimized assembler if
required is the easy job -- the difficult part of benchmarking is establishing the
performance "connection" between kernels and application performance.

Often benchmarks offered by organizations planning to purchase computer equipment
focus on the job stream or load. Characterizing the load by a limited number of jobs
is a problem at least as difficult as the ones expressed so far. It is
particularly perplexing in the supercomputing arena. For example, the biggest most
-esource consuming job in a company's scientific load, may be a job that pushes
computation and I/O to the limits. Perhaps this is due to the fact that it requires
more real memory than avilable in the system. In the supercomputer environment such a
program may become one of the minoL or even discarded programs owing to the
possibilities offered by the new capability. wiJ. Lhat rith

^
- difficult caveat

to overcome, following steps in benchmarking are suggested:

1. Identify the spectrum of applications important to load.

2. Tr each appli -4-in identify computational "hot soo' " ;d :,'c t

3. Examine alternate potentially efficient computational approaches at model,
implementation, algorithm, and kernel levels.

4. Establish timing mappings from important kernels to important algorithms to
application performance.

96

The above steps are the hard part. The benchmark step itself is easy. Run the
applications "as-is", followed by individual tests of important algorithms and
kernels for both existing and alternate algorithmic approaches. In addition, where a
computational kernel is critical to performance, optimize it by whatever means
necessary (i.e. don't rely solely on compilers for optimal performance.) This is
important even if the ultimate goal is to have all models running from Fortran.
This will give one a better picture of potential performance.

The expense of this approach can be considerable. However, if done correctly, the
benchmark will dictate a conversion strategy and new approaches to computational
strategies on the target machine. The truly expensive part is the characterization of
load, algorithm, and kernel hot spots, and the mapping connecting thLse levels of
complexity to the application. This analysis is only required once for all computers,
if done well. The result is a benchmark methodology directly tied to the
organization's load. In times of pressing resources or when a quick evaluation of a
computer is required (perhaps for screening purposes), the benchmark kernels alone can
be used to give meaningful benchmark results by relating back to timing models for
the existing load AND alternate approaches. Thus, both an estimate of existing load
and potential performance can be chzracterized from a rather simple test. With this
kind of load characterization, the actual full application benchmark will give the
least amount of insight into the performance of the new hardware. In fact, what has
just been described is not far from the use that the functional fathers of the
Livermore kernels make of their kernel benchmarks, for they have a "feel" or
"connection" between the kernels and important applications that characterize their
load. This may not be true for all the Lab scientists, and is certainly not true
for most of the rest of the world who are sometimes influenced by kernel benchmarks of
this kind.

AN EXAMPLE

A true awareness of critical parts of an application program can only be attained by
an intimate understanding of the program's use and the flow of the program's
input, computation, and output. It is very difficult for someone who sees a program
listing for the first time (even with good accompanying documentation) to be able to
gain this type of awareness. However, once a clear documentation of the program's
computational "hot spots" are identified, optimal benchmarks can be obtained. An
example of a program profile can illustrate what is required. Consider the following
timing profile of a Power Flow application used in the electric power industry.

POWER FL0W

FUNCTION CPU PERCENTAGE

MATRIX SETUP/INPUT 7 %
MERGE CASE OR REDUCTION 6 %
SOLUTION (SPARSE MATRIX) 55 %
OUTPUT ANALYSIS 32 %

TABLE 3-10

What the profile above does not reveal, is that roughly 90 percent of the code listing
is outside the solution phase. The computational kernels that perform roughly 55% of
the computation are rather small. In fact, if one were to benchmark the sparse matrix
kernel alone, a tremendous amount would be learned about the performance of the
entire code. Another thing that is not revealed by the profile, which is critical to
a benchmark process, is that the code can be used much differently. As it stands,
even if one reduced the computationally oriented section (the solution step) to zero
percent, the code improvement would be only reduced by a factor a little better than
two. However, if one knew that the code is really used iteratively with the user in
the loop to project effects of new power generation placement or the effects of
transmission line malfunction, another program -ould be conceived. One in which the
same solution step is run many times against automatic changes in the input. This would
eliminate the need to setup all the input, merge cases, and analyze all the output. In
this more sophisticated model, the solution phase is done repeatedly and can account
for 90 % of the job time. Thus, by benchmarkir, the sparse matrix kernel, one can infer
performance of a program yet to be designed, and predict real long term cost
benefits from high performance hardware upgrade. In effect, one can benchmark
today's program and infer performance about tomorrow's load. It is against this model,
'f in-deptn understanding of a particular application, that benchmark studies should
be developed. As difficult and challenging as this may be, it is well worth the effort.
In fact, it has been proposed that industry sectors cooperate to ar' 'eve meaningf-l
industry h en~luark metnous. for exampie, aerospace o pe:ochemica4 benchmark auiLes
uould be conceived that would help both the respective industries and hardware
vendors. These suites could benefit greatly by mixing both applications and important
underlying kernels together. At the very least, the important kernels with
documentations as to how they interact with applications, can provide an importart
benchmarking tool.

-AL -be-&

97

In summary, benchmarking supercomputers is a difficult and oftea misunderstood process
by many potential users. The method or approach outlined above is not as simple as it
appears. characterizing an application's performance from underlying kernels is not
simple. At the outset it was mentioned that the author believes benchmarking
supercomputers is, indeed, a research area. Nevertheless, increased understanding
of benchmark issues can lea, to a more scientific approach to the process. Important
issues in the benchmark process include a firm understanding of what information is
being sought. Does the benchmark adequately predict existing load performance or
future load performance? Does the benchmark indicate the potential for new approaches
to computational problems or even the feasibility of new physical models? Finally, it
is recognized that kernel benchmarks such as those mentioned are important tools if
properly used, but if used without connection to the desired applications their
performance can bear little relation to load performance. This is well recognized by
those who provide kernel benchmark data and must be understood by the community that
interprets these data.

t** IMPORTANT CONCEPTS *

o Benchmarking is an unstable process. it is sensitive to architecture, algorithms,
and sometimes test case data.

o The selection and use of optimal kernels within an application can improve
benchmark results dramatically. This also separates the negative effects of the
compiler.

o The commonly used kernel benchmarks can be misused quite easily. The usefulness of
kernel benchmarks depends on a sound understanding of the relationship between the
computational kernels and actual application programs. Untouched benchmarks of
applications themselves, can be just as misleading.

o A Benchmark Methodology:

1. Identify the spectrum of applications important to load.

2. In each application identify computational "hot spots" and I/O bottlenecks.

3. Examine alternate potentially efficient computational approaches at model,
implementation, algorithm, and kernel levels.

4. Establish timing mappings from important kernels to important algorithms to
application performance.

3.6 REFERENCES

[3-1] Jack Dongarra, "Performance of Various Computers Using Standard Linear
Equations Software in a Fortran Environment," Technical memo. No. 23,
Mathematics and Computer Science Div., Feb. 27, 1986.

[3-2] K. Neves, "Mathematical Libraries for Vector Computers," Computer Physics
Communications Vol. 26, 1982, 8 pages.

(3-3] R. Hockney, "Performance of Parallel Computers," Proceedings, NATO Advanced
Research Workshop on High-Speed Computation, Juelich, W. Germany, June, 1983.

(3-4] K. Fong and T. Jordan, "Some Linear Algebraic Algorithms and their Performance
on the CRAY-I," Proceedings of the S on High Spee Computer and
Algorithm Organization, Academic Press, New York, 1977, pp. 313-316.

[3-5] B. Dembart and K. Neves, "Sparse Triangular Factorization on Vector computers,"
Exploring Applications of Parallel Processing to Power Systems Problems EPRI EL-
566-QR, October 1977, pp.57-103.

(3-61 I. Duff, A. Erisman, and J. Reid, Direct Methods for Sparse Matrices, Clarendon
Press, Oxford, 1986.

[3-7] Sources and Development of Mathematical Software, W. Cowell, Ed., Prentice-Hall

Series in Computational Math., 1984.

[3-8] A. Erisman, K. Neves, I. Philips, "The Boeing Mathematical Libarary", IBID.

(3-91 K. Neves, "The Impact of CRAS's Changing Architectures on Scientific
"nr'rtation," Proceedings Cray User Group, Stockholm, April 1985.

(3-10] P. Fox, "The PORT Mathematical Subroutine Library," Sources and Development of
Mathematical Software, W. Cowell, Ed., Prentice-Hall Series in Computational
Math., 1984.

(3-11] FACOM VP System Performance Data, Fujitsu Ltd, private communication, 1985.

(3-12] R. Grimes, J. Lewis, H. Simon, "Eigenvalue Problems and Algorithms in Structural
Engineering," Large Scale Eigenvalue Problems, . J. Cullum and R. Willoughby,
eds., Elsevier, North-Holland, 1986, pp. 81-93.

(3-:J] s. Chen, "Overview of the CRAY X-MP," Presented at Cray Research Visit, 1984.

[3-14] Vectorpak Manual, (A product of Boeing Computer S,.vices, P.O. Box 24346,
Seattle, WA, 98124.)

(3-15i F. H. McMahon, "The Livermore Fortran Kernels: A Computer Test of the Numerical
Performance Range," UCRL-53745, LLNL, U. of CA, Livermore, CA., December, 1986.

(3-16] J. Dongarra, J. Bunch, C. Moler, and G. Stewart, LINPACK Users. Guide, SIAM
Publications, Philadelphia, 1979.

[5-17] K. W. Neves, "Trends in SupercomputLer Architecture," Proceedings, Ninth
Conference on Electronic Computation, ASCE, Feb. 1985.

[3-18] J. Lewis and H. Simon, "Impact of Hardware Gather/Scatter on Sparse Gaussian
Elimination," BCS Technical Report, ETA-TR-33 (PO Box 24346, MS 71-20, Seattle,
WA 98124) June, 1986.

99

CHAPTER 4: VECTORIZATIOI OF FORTRAN PROGRAMS AT DO-LOOP LEVEL (Prof. Dr. Gentzsch)

4.0 INTRODUCTION

In the previous chapters the impact of the computer hardware on algorithm performance
was discussed from a general point of view. It was made clear that the most effective
use of supercomputers comes from sound understanding of computer architecture and an
appropriate computational strategy. In this and subsequent chapters, the focus will
be on fluid dynamic applications. Today, and for some years to come, the major
interface between the scientist and the computer will continue to be the Fortran
language. We will present in this chapter some common techniques useful in dealing with
code optimization within the critical "loops" of Fortran , and In Chapter 5 the important
consequences of restructuring the linear algebra algorithms common in CFD applications.
Finally, in Chapter 6, major applications will be reviewed from a computational strategy
perspective giving a broad-based approach utilizing proper Fortran, proper algorithms,
and awareness of architectural dependencies. Here we shall restrict ourselves to
discussing some helpful coding techniques, which are easy to understand and to
implement. However, it should be emphasized, that the selection of an appropriate
algorithm is generally far more important than fancy programming techniques (see chapter
5).

4.1 IMILEMDITATIR OF SERIAL PROGRAMS ON VECTOR COMPUTERS

The production codes in any field of computational physics are usually highly complex.
The vectorization of many thousands of statements will naturally frighten every user.
With the following strategy, however, an efficient vectorization of only parts of the
program substantially improves efficiency, while not being particularly arduous [8j:

STEP 1: Generation of a histogram showing the amount of CPU-time for different sections
of the program. Table 4.1 shows a Flow Trace for a multigrid solution of the Helmholtz
equation on a CRAY-l. As is demonstrated, about 86 percent (related to 0.86 in the
histogram) of the total CPU time is spent in the subroutine RELAX solving the systems of
linear equations with different mesh sizes. This is typical for most production codes
arising in the numerical treatment of differential equations. A more detailed code
analysis is possible on most of the vector computers. For example, for the CRAY X-MP,
static analysis tools such as FTREF and VMARK provide the user with information on the
references to Fortran variables and vectorization potential at compilation time. During
program execution, dynamic analysis software such as FLOWTRACE and SPY supply the user
with timing information (from the hardware performance monitor).

Table 4.1: Simplified flow trace for a multigrid code on a CRAY.

ROUTINE TIME % CALLED

I FNHIRI 0.000395 0.00 1

2 GRDFN 0.000061 0.00 21
3 PUTZ 0.003958 0.04 61

4 KEY 0.017824 0.17 1540
5 PUTI 0.094767 0.90 8

6 F 0.028835 0.27 16129
7 PUTB 0.000375 0.00 1

8 G 0.000915 0.01 512
9 C 0.038148 0.36 21343
10 CNFIX o.058612 0.56 10

1I RELAX 9.056721 86.16 370 vectoriaation

12 RSCAL 0.323413 3.08 60

13 INTADI 0.888053 8.45 60

** TOTAL 10.512078
*** OVERHEAD 1.121270

STEP 2: Hand-tailor the most time-consuming subroutines if auto-vectorization does not
suffice. The CYBER and the CRAY compilers present, at the end of each subroutine, a
complete list of the vectorized and non-vectorizable loops together with the reasons for
non-vectorizability. A nonlinear recursion is evaluated in DO-loop 20 of the next exam-
ple (part of the Thomas algorithm discussed in the next chapter) and the reason for non-
vectorization is given for a CRAY:

10. 0(2) = 4.
11. DO 20 I = 3, M
12. EL(I)=I./O(I-I)

13. 0(I) =4. -EL(I)
14. 2C CONTINUE

AT SEQUENCE NUMBER - 13.
PRNAME LJAC COMMENT- DEPENDENCY INVOLVING ARRAY "0" IN

SEQUENCE NUMBER
12

STEP 3: In the case of a highly serial algorithm involving, for example, linear and non-
linear recurrences, STEP 2 is not successful and a complete restructuring of the algo-
rithm is necessary. We will discuss this step in chapters 5 and 6 for many examples.

4.2 VECTORIZATION EXAMPLES FOR CRAY COgPUTERS

The CRAY computers are register-to-register vector computers as described in Chapter 2.
For this type of computers we present some helpful restructuring techniques and their
implementation in computer programs such as (see (31, (4], [51, (8)-(li, for more
detail)

- Putting DO-loops into subroutines or functions and vice versa

- Using few loops with long code blocks in preference to many short code loops

- Using long loops inside short loops rather than vice versa

- Special subroutines for linear recurrences

- Partial vectorization of irregular addressing

- Removing IF statements

- Manipulating operations so that they occur in an order that increases chaining.

This is by far not a complete list of loop vectorizations but gives the reader a first
impression of code modifications to obtain adequate vector structures.

The FLOW TRACE option is use: first to obtain a complete list of the subroutine calling
tree and the time spent in each routine. One then starts vectorizing the most time
consuming parts of the program.

As there are few FORTRAN extensions provided for the CRAY FORTRAN compiler, most of the
problems treated in this section deal with the restructuring of a sequence of standard
FORTRAN statements. For example, subroutine and function calls within Do loops depen-
ling on the loop indices prevent the compiler vectorizing. The following sequence might
have arisen in a proor'm solving a finite difference equation (MI=M-I);

DO 1 J = 2, i1l
DO 1 I = 2, Ml
PM = VELOC (I,J)
PL = VELOC (I-1,J)
PR = VELOC (I+l,J)
CALL RELAX (PM, PL, PR)
VELOC (I,J) = SQ2 (PM)

1 CONTINUE

SUBROUTINE RELAX (PM, PL, PR)
COMMON OM, HH
PM = (1.-OM) * PM + 0.5 * OM * (HH + PL + PR)
RETURN
END

FUNCTION SQ2 (P)
DATA ALPHA /... /
SQ2 = ALPHA * SQRT (P)
RETURN
END

The innermost DO loop will not vectorize owing to the subroutine call and the call to a
function not recognized by the compiler. Putting the loop inside the subroutine leads to

CALL RELAXV (VELOC)
CALL SQ2V (VELOC)

SUBROUTINE RELAXV (U?
DIMENSION U (100, 100)
COMMON OM, HH, Ml
OMI = l.-OM
OM2 = 0.5 *OM
DO 1 I = 2, M1
DO 1 J = 2, M1
U(I,J) = OMI * U(I,J) + OM2 * (HH + U(I-1,J) + U(I+I,J))

1 CONTINUE
RETURN
END
SUBROUTINE SQ2V (V)
DIMENSION V(100, 100)
COMMON OM, HH, Ml
DATA ALPHA /... /

DO 1 J = 2, M1
DO 1 I = 2, M1
V(I,J) = ALPHA * SQRT (V(I,J))

I CONTINUE
RETURN
END

Both subroutines will now vectorize. But in this example it would be better to put the
subroutines inside the loop to increase the arithmetic in the inner loop:

DO 1 I = 2, Ml
DO 1 J = 2, M
VELOC (I,J)= OM1 * VELOC (I,J) + OM2 * (HH + VELOC (I-l,J) +

VELOC (I+l,J))
VELOC (I,J)= ALPHA * SQRT (VELOC (I,J))

1 CONTINUE

In this example, aside from the improved vectorizability, the program also achieves
increased transparency. Notice that the I-loop is the outer loop because of the
dependence corresponding to this index.

The above instruction sequence is also an instructive example in the use of as few loops
as possible, containing long code blocks, instead of many short-code vectorizable
blocks. Consider the following sequence:

CALL VADD (A,B,C,N)
CALL VMULT(C,A,E,N)
CALL VADD (E,B,A,N)

Here one uses the vector subroutines VADD and VMULT. This version vectorizes, but the
expanded combination

DO 1 I = 1,N
A(I) = (A(I) + B(I)) * A(I) + B(I)

1 CONTINUE

is significantly faster then the series of calls. The sum A+B and the product (A+B)*A do
not have to be stored, but can be kept in a register and A does not have to be fetched a
second time. This is also an example of the manipulation of operations in order to
increase chaining. Consider for example

DO 1 I = 1,1000
DO I J = 1,5
A(I,J) = (A(I,J) + B(I,J)) * A(I,J) + B(I,J)

1 CONTINUE

Since only the innermost DO loops are vectorized, the calculation with vectors of length
5 leads tc a performance rate similar to that of scalar performance. Reversing the order
of the I and J loops would lead to an improvement factor of more than 10 over the
original code depending on the computer.

102

One of the most difficult problems on vector computers is the vectorization of linear
and non-linear recurrences. As this is more a question of algorithm, we shall return to
it again later. For the moment however, we shall restrict ourselves to the imple-
mentation of single linear recurrences on the CRAY.

A linear recurrence uses the result of a previous pass through the loop a. an operand
for subsequent passes, and this prevents vectorization. An example of a first-order,
linear recurrence is

S(1) = A(l)
DO 1 I = 1,N-1
S(I+I) = -B(I) * S(I) + A(I+lI)

I CONTINUE

A second-order, linear recurrence may be of the form

S(1) = A(l)
S(2) A(2)
DO 1 I = 1,N-2
S(I+2) = B(I) * S(I+1) + A(I+I) * S(I)

1 CONTINUE

In these cases straightforward vectorization is impossible. Therefore, CFT offers
special subroutines which run with optimum efficiency on the CRAY, and which solve
first-order, and some second-order, linear recurrences. The subroutine

FOLR 4N,A,INCA,B,INCB)

for example solves the above mentioned first-order linear recurrence. Here INCA and INCB
are the skip distances between the elements of the vectors A and B, respectively. N is
the length of the recurrence. The output overwrites the input vector B. On the X-.*P with
the CFT77 compiler this routine runs with more than 20 MFLOPS.

However, within mor- complex programs, vectorization of recurrences may still be
straightforward (cf. section 5.3 for a more detailed discussion).

If the DO-loop is not truly recursive, as for example in

DO I I = 200, 300
A(= A(I-L)

1 CONTINUE

and L has some positive integer values between 101 and 200, the easiest approach is to
try directing the compiler to vectorize the loop and see if the answers remain the
same. The compiler directive

CDIR$ IVDEP

placed immediately in front of the DO-loop to be vectorized causes the computations to
be performed in vector mode, provided the loop contains no CALL or IF statements.

Another example of fictitious recursions often arises in problems with red-black and
zebra-line structures (cf. sections 5.4 and 5.5) which can easily be vectorized by
applying the same compiler directive:

DO 40 J = 2,Ml,2
CDIRS IVDEP

DO 40 I = 2,MI,2
U(I,J) = 0.25 * (U(I-I,J) + u(I+lJ) + U(I,J-l) + U(I,J+l))

40 CONTINUE

For fixed J, the even subscripted values of U on the left hand side depend only on the
odd subscripted ones on the right hand side, and the directive is appropriate.

In many applications no contiguous data structure is present. In the Monte-Carlo method
(see section 6.10) we have to deal with randomly distributed data, while in three-
dimensional problems it is necessary to gather and scatter two- and one-dimensional
substructures. In FORTRAN this problem is expressed by subscripts as in the following
example

DO 1 I = 1, 100
J = INDEX (I)
A(I) = B(J) +

1 CONTINUE

For some vector computers without hardware gather/scatter this loop can partly be vecto-
rized by using a temporary array to first gather the irregularly distributed elements
into a contiguous vector:

Ak- -

DO 1 I = 1, 100
j = INDEX (I)

1 TEMP(I) = B(J)
DO 2 I = 1, 100

2 A(I) = TEMP (I) +

For problems with irregular addressing, gather and scatter subroutines are available.
The above example then simply reads as follows (e.g. for a CRAY-l)

CALL GATHER (100, TEMP, B, INDEX)
DO 2 1 = 1, 100

2 A(I) = TEMP(I) + ...

The gather subroutine uses the integer values stored in the elements of the array INDEX
as indices to take the random elements of vector B and make them contiguous in the
vector TEMP. For many of today's vector computer, however, hardware gather and scatter
are available. Therefore a hand-tailoring of these loops is no longer necessary for
these computers.

As a last problem we deal with removing IF statements from innermost loops. Vectoriza-
tion of some loops containing IF's may be straightforward while others are difficult but
not impossible, depending on the structure of the code. Intrinsic functions may help to
overcome some of these difticulties. The following example

DO 1 I = 1, 100
IF(A(I).LT.0.) A(I) = 0.

1 B(I) = SQRT (A(I)) + ...

is already vectorized by the compiler and transformed into

DO I I = 1, 100
A(I) = AMAX1 (A(I), 0.)

1 B(I) = SQRT (A(l)) + ...

which selects the maximum value of the two elements A(I) and 0.

In the next example, however, the user has to employ the vector merge operation CVMGT to
merge the results of different vector computations (for example for inner and boundary
points of a two-dimensional domain):

DO 1 I = 1, 100
IF(A(I).LT.0.) GOTO 2
B(I) = A(I) + C(I)
GOTO 1

2 B(I) = A(I) * C(I)
1 CONTINUE

which can be converted to

DO 1 I = 1, 100
B(I) = CVMGT(A(I) * C(I),A(I) C(I), A(I).LT.0.)

1 CONTINUE

Other vectorization aids are explained in more detail in [5). Furthermore a list of all
scientific application subprograms is available and a brief explanation may be found in
the Library Reference Manuals of the companies.

4.3 VECORIZATION EXAMPLES FOR THE IBM 3090VF

Some additional examples deal with restructuring of simple DO-loops with regard to t:.e
architecture of the IBM 3090 with Vector Feature (VF), which in one important point is
very different compared to other vector computers: namely, the cache memory between main
memory and vector registers. Although many loop constructs are automatically vectorizeo
by the compiler, rearranging the loop contents with respect to

Cache utilization
minimizing load/store

* keeping data in registers

I104

often improves efficiency remarkably. The examples, taken from [5],[61,[9j-[113, consist
of different Fortran versions dealing with a special problem. Performance in MFLOPS
depending on vector length N is shown and the results are interpreted, for the following
cases:

AVOID TEMPORARY ARRAYS

Case 1: Case 2: Case 3:

DO 100 I=I.N DO 200 I=1,N DO 300 I=1,N
T(I)=A(I+I) Y=A(I+I) A(I)=C(I)
A(I)=C(I) A(I)=C(I) B(I)=A(I+I)
B(I)=T(I) B(I)=Y 300 CONTINUE

100 CONTINUE 200 CONTINUE

Table 4.2: MFLOPS (without and with cache miss)

N Case I Case 2 Case 3

8 2.7 2.4 3.7 2.8 4.0 3.9
16 4.7 3.1 6.2 3.6 6.8 5.5
32 7.0 4.4 9.9 5.6 10.8 8.4
64 9.9 5.7 14.4 8.3 15.3 10.7

128 13.6 7.9 18.8 12.9 19.4 15.7
256 13.7 7.4 19.9 12.2 18.9 14.1
512 14.8 7.1 19.7 11.1 20.2 13.1

1024 15.6 7.6 20.2 12.2 20.2 14.7

Comment:

The compiler vectorizes all three cases. However the best speed-up is obtained for case
3 because it involves less storage than cases 1 and 2. Indeed, case 1 with four vectors
involved is the slowest. The more vectors are involved, the more the influence of the
cache can be seen in cases, where the cache has to be emptied and refilled before the
operations can start, which is shown in the second columns. Again, case 3 with the
fewest number of vectors performs best.

As can be seen from the table, the use of the temporary variable Y in case 2 is nearly
as fast as case 3. The reason is that the scalar variable T conceptually is expanded
into a temporary array which appears only in a vector register and never in storage.

AVOID SCALAR VARIABLES WHICH ARE CALCULATED BEFORE THE EXECUTION
OF THE CONTAINING LOOP

Case 1: Case 2:

R =0. R(1)=0.
DO 100 I=2,N DO 200 I=2,N
S=A(I)*B(I) R(I)=A(I)*B(I1)
C(I)=S R C(I)=R(I)+R(I-I)
R=S 200 CONTINUE

100 CONTINUE

Table 4.3: MFLOPS for case 1 and 2

N Case I case 2

8 6.9 1.8
16 6.5 3.1
32 6.3 5.6
64 6.2 6.3

128 6.1 9.1
256 6.0 10.1
512 5.9 12.3

1024 5.9 13.6

Comment:

In case 1, because of presetting the scalar R to zero, R is not expanded automatically
into a temporary array. So, the first loop does not vectorize. The vector report message
tells that vectorization is not possible because of the scalar variable R which uses a
value that is set before the execution of the containing loop. Case 2 is automatically
vectorized.

IM

AVOID IF-STATEMENTS IN LOOPS

Case 1: Case 2:

K=N/2 K=N/2
DO 100 1=1,N DO 200 I=K,NIF(I.GE.K) C(I)=A(I)*B(I) C(I)=A(I;*B(I)

100 CONTINUE 200 CONTINUE

Table 4.4: MFLOPS (without and with cache miss):

N Case 1 Case 2
without with without with

8 1.4 0.9 1.9 1.2
16 2.2 1.3 3.4 2.0
32 3.1 2.2 5.7 3.0
64 3.9 3.3 8.6 7.4

128 4.1 3.0 11.6 5.6
256 4.1 2.7 12.6 4.6
512 4.2 3.2 13.0 7.1

Comment:

Both cases are vectorized by the compiler. However, a logical mask has to be created
under which computations in case 1 are performed. This results in a performance
decreasing.

Another important point should be mentioned arising with very simple loops such as the
multiplication of two vectois: Performance is increased remarkably using longer vectors.
In small 2-dimensional arrays it is useful therefore to restructure the whole data into
a long 1-dimensional vector. If this is too cumbersome, computation in scalar mode
sometimes yields better performance.

UNROLL INNER LOOPS OF 2

Case 1: Case 2:

DO 100 I=I,N DO 200 I=l,N
C(I)=0. C(I)=A(1)*B(I,1)+A(2)*B(I,2)
DO 200 J=1,2 200 CONTINUE

C(I)=C(I)+A(J)*B(I,J)
200 CONTINUE
100 CONTINUE

Table 4.5: MFLOPS for cases I and 2

N Case 1 Case 2

8 2.4 6.0
16 3.1 10.4
32 2.7 17.1
64 2.2 25.7

128 2.5 34.7
256 2.8 36.2
512 2.9 38.2

1024 3.0 38.2

Comment:

Simiiar improvements (due to the COMPOUND operations) are to be expected for unrolling
of inner loops of 4, 5, etc.

AVOID COMPONENT WITH CALL TO SUBROUTINES

Case 1: Case 2: Case 3:

DO 100 I=!,N CALL ADD1(AB,C,N) DO 300 1=1,N
CALL ADD(A(I) ,B(I),C(I)) C(I)=A(I)*B(I)

100 CONTINUE 300 CONTINUE

I1)6

Table 4.6t SLOPS for casea 1, 2 and 3

N Case I Case 2 Case 3

8 0.5 1.4 2.1
16 0.5 2.5 3.6
32 0.5 4.3 5.9
64 0.5 6.8 8.8

128 0.5 9.9 11.8
256 0.5 11.2 12.4
512 0.5 12.4 12.6

1024 0.5 12.7 13 1

Comment:

The subroutine ADD is not analyzable within loop 100. Therefore this loop is not vecto-
rized by the compiler. In case 2 the overhead of the subroutine call results in minor
decrease in performance.

USE STATEMENT FUNCTIONS INSTEAD OF FUNCTIONS

Case 1: Case 2:

DO 100 I=I,N SFUNCTfR,S)=(R+S)**2
C(I)=FUNCT(A(I),B(I))

100 CONTINUE

DO 200 I=I,N
C(I)=SFUNCT(A(I),B(I))

200 CONTINUE

Table 4.7: FLOPS for cases I and 2

N Case 1 Case 2

8 0.6 1.8
16 0.6 3.2
32 0.5 5.1
64 0.5 7.3

128 0.5 9.5
256 0.5 9.8
512 0.5 9.9

1024 0.5 10.2

Comment:

Loop 100 is not vectorizable because the user function FUNCT is not analyzable. In case
2 the overhead of the statement function SFUNCT reduces the performance up to 30 per-
cent.

USE VECTOR DIRECTIVES

Very often, necessary information for the optimal vectorization is not available at
compile time. Therefore, vector directives may be used to support the compiler making
appropriate decisions about vectorizations. At the beginning of the program unit the
statement

PROCESS DIRECTIVE ('VDIR:')

has to be specified with a user defined string The vector directives, available
for most of the existing vector computers, are specified as comment lines directly above
the loop to which they refer. For the IBM 3090 Vector Feature, e.g., the following
directives are available:

C*VDIR: PREFER VECTOR
execute the following loop in vector mode

C*VDIR: PREFER SCALAR
execute the following loop in scalar mode

CWVDIR: ASSUME COUNT (n)
the iteration count of the following loop is the specified value

C*VDIR: IGNORE RECRDEPS
ignore potential dependences

AM1 _ __ --!&

C*VDIR: IGNORE EQUDEPS
ignore potential dependences between variables that are in an
EQUIVALENCE relationship

Combinations of vector directives are possible. For most of the existing vector
computers, similar vector directives are available.

4.4 SPECIAL VZCI1RIZATION HINTS

As a conclusion based on the previous examples a "checklist" for efficient vectorization
especially at DO-loop level (step 2) can be set up which contains, among others, depen-
ding on the computer, the following items:

* make,
Innermost DO-loops most efficient

* avoid:
IF-statements
Subroutine and function calls
Irregular (nonlinear) addressing
Memory bank conflicts
Excessive paging
Complicated branching within a loop
Linear and nonlinear recursions

* use:
Many arithmetic operations within inner loops instead of many loops with few operations
Long vectors (i.e. large one-dimensional arrays with length egual to the number of grid

points, instead of 2D arrays)
Unformatted I/O
Chaining possibilities and linked triads to achieve supervector speed (done by some

compilers automatically)

unroll:
short Do-loops

* separate:
Vectorizable from non-vectorizable parts

- switch
Inner and outer loops to have the longer index range on the inner loop and to suppress

dependencies

In addition to this checklist some important rules concerning step 3, vectorization of

numerical algorithms (see Chapter 5) with regard to vector computers are

* For the CYBER 205, change 2D and 3D arrays to ID arrays

* Use diagonal storing for banded matrices

* Avoid gather/scatter on the CRAY-IS

* Vectorizable preconditioning in ICCG with approached inverse

* Assembler programming on the CRAY-IS and the CRAY-2 of the most time-consuming parts

* Use the Engineering and Scientific Library (ESSL) on the IBM VF

* Care has to be taken in implementing the boundary conditions on vector computers to
maintain long vectors

* Solve many algebraic systems simultaneously (as in SLOR, ADI, POISSON, see chapter 5)

* Simplify algorithms using irregular addressing (such as pivoting in Gaussian elimina-
tion)

* Use red-black or zebra reordering in point or line relaxations (see chapter 5)

* Use simple elements (triangles in 2D, tetrahedra in 3D) and, if possible, hardware
gather/scatter in finite element codes

For unstructured grids use explicit schemes (see section 6.7)

* Improve the stability of explicit schemes which are very suitable for vector and
parallel computers (see section 5.9).

For more details see (17].

. --- - - -_ --A

4.5 SONE REMARKS ON MULTITASKING

While vector processing takes place at the level of innermost DO-loops, the division of
a job into sub-tasks for multitasking should be as global as possible. Three strategies
may be applied when simultaneously using two or more processors:

* Domain decomposition: Divide the computational domain into substructures to obtain
independent problems in each subdomain to be solved on different processors

* Program decomposition: Split the computer code into smaller parts (e.g. subroutines
with similar amount of CPU processing time) each of which is then solved on one
processor.

* DO-loop decomposition: same as program decomposition, but on DO-loop level.

One efficient tool is dynamic load balancing to distribute the work equally among the
different processors. Before multitasking, however, it is recommended to vectorize the
computer program for the single processors.

For some special CFD applications, the concept of concurrently using multiple CPU's for
a single program has led to a speedup factor of up to 3.5 on a 4-processor computer, as
compared to the vectorized, non-multitasked codes. A detailed analysis of speed-up is
discussed in [14] and compared with the corresponding actual speed-up for real computa-
tions.

4.6 LITERATURE

[] Besaw K.V.: Advanced Techniques for Vectorizing Dusty Decks. UNISYS Report 1986.

[2] Coleman H.B.: The Vectorizing Compiler for the UNISYS ISP. UNISYS Report 1986.

[3] CRAY-l FORTRAN Reference Manual (CFT]. Pub. 2240009, CRAY Research, Minneapolis
1979.

[4] CRAY-1 Computer Systems FORTRAN (CFT) Reference Manual SN-0009, Revision I, CRAY

Resarch Inc. 1982.

[5] CRAY Research Inc. Optimization Guide. CRAY Res. Publ. SN-0220, 1981.

[6] Dubrulle A.A., Scarborough, R.G.: Kolsky, H.G.: How to Write Good Vectorizable
Fortran. IBM Techn. Report G 320- 3478, 1985.

[7] Gentzsch W.: A Survey of the New Vector Computers CRAY-IS, CDC-CYBER 205 and the
Parallel Computer ICL-DAP. Architecture and Programming (in german). DFVLR-FB 82-
02 Report, Koeln 1982.

(8] Gentzsch W.: Vectorization of Computer Programs with Aplications to Computational
Fluid Dynamics. Vi~weg Publ. Comp., Braunschweig [F.R.G.] 1984.

[9] Gentzsch W.: IBM 3090VF, Utilization and Performance Evaluation. Report Regensburg,
Dec.1986.

(10) Gentzsch W.: An Introduction to the Vectorcomputer UNISYS ISP. Report Regensburg,
June 1987.

(11] Higbie L.: Vectorization and Conversion of FORTRAN programs for the CRAY-l [CFT
compiler. Pub. 2240207, CRAY Regarch, Minneapolis 1979.

[12] Hockney R.W.: Performance of parallel computers. Proc. NATO Advanced Research
Workshop on High-Speed Computation, Juelich, 20-22 June, 1983.

[13] Kascic M.J.: Vector processing on the Cyber 200. Infotech State of the Art Report
"Supercomputers", Infotech Int. Ltd., Maidenhead, U.K. 1979.

[14] Larson J.L.: Multitasking on the CRAY X-MP-2 Multiprocessor. Computer, 1984, 62-
69.

[15] Rudsinki L., Worlton J.: The impact of scalar performance on vector and parallel
processors. In: High Speed Computer and Algorithm Organization [Kuck,D.J., Lawrie,
D.H., Sameh,A.H., eds.], Acad.Press, New York 1977, 451-452.

(16] Scarborough, R. G.: Kolsky, H.G.: A Vectorizing Fortran Compiler. IBM J. Res and
Devel., Vol. 30, No 2, pp. 163 - 171, 1986.

(17] Schoenauer W.,Gentzsch W. (Eds.): The Efficient Use of Vectorcomputers with Empha-
sis on CFD. Vieweg Publ.,F.R.G. 1986.

]09

CHAPTER St R STRUCTURING OF BASIC LINEAR ALGEBRAIC ALGORIHTES (Prof. Dr. Gentzsch)

5.0 INTRODUCTION

In the previous chapter the vectorization of typical do-loops arising in CFD problems
was discussed. Until now, we have not consilered the algebraic structure of the basic
algorithm. This is by far the most important consideration. Indeed, a good algorithm
poorly coded is usually preferable to a poor one optimally coded. For this reason, in
the following, we turn our attention to the restructuring of some basic linear algebraic
algorithms such as matrix*vector and matrix*matrix operations, linear recursions up to
more complex algorithms and iterative methods for the solution of linear algebraic
systems of equations with sparse matrices. Problems involving linear algebraic cal-
culations consume large quantities of computer time. If substantial improvements can be
made within the arithmetic section, a significant reduction in the overall computation
time will be realized.

5.1 BASIC VECTOR OPERATIONS

Many linear algebraic algorithms contain one or more of the following operations

vector * vector
matrix vector
matrix * matrix.

The first one is easily vectorized by the current compilers but the latter two opera-
tions sometimes will cause problems. In their original form the operational structure
is, more or less serial, depending on the architecture of the computer. The
matrix*vector procedure

/ A 11A12 AIY 2 ' A22 A2N X2

=* x

YN AN AN AN XN

results in

N

Yi= Z AikXk ' i = 1,2. N.

k=1

Here A(I,K) are the elements of an N * N - matrix A, and X, Y are vectors with N

components. In other words the i-th component of Y is calculated by

Y(I) = (I-th row of A) * X,

which for many vector computers (e.g. VP 200, CRAY-2) with N even is not suitable, since
the elements are stored by columns and data are loaded with large stride N. But looking
at the operation more globally

Y= A11 X I A 2X2 " " + AINXN

Y = A2 1XI + A2 2X2 A2NN

Y = ANIXi I AN2 X2 + ""
+
A NNXN

yields the following basic vector structure

Y1 A1 A 22 AIN

Y(2 A 21 A2 A 2N

)2 . N
YN ANl A /2 A NN

AM- -"--- -

* * IIP I * 'V - . - o 1 -.. . .

The elements of each column of the matrix A are stored contiguously in the memory. The
vectorlzed algorithm then has the form

Y2 Y1 A i

S Y : Xj * A:for j z 1,2 ... N.

Y N Y N A j

In a previous step all elements of the vector Y are set to zero. The result is a triadic

(SAXPY) operation of the form

vector = vector + scalar * vector.

For many vector computers, an (assembler) library routine is available for this
operation and the performance rate of these triads is almost doubled for long vectors.

For the matrix*vector case re-ordering of the corresponding FORTRAN-code is very simple.
One only has to interchange the loop-indices I and J to transform a row-like algorithm
into a column-like one to obtain linked triads:

Scalar loop:

DO 1 I = 1,N
DO 1 J = 1,N

1 YI) = Y(I) + X(J) * A(I,J)

Vector loop:

DO 1 J = 1N
DO 1 1 = IN

1 Y(I) = Y(1) + X(J) * A(I,J)

The first inner loop represents a product of two vectors X and A(I,*) while the vector
inner loop results in a triad for each J.

This principle is easily carried over to more complex problems as we shall shortly
demonstrate using the matrix multiplication for large, full matrices. Matrix multiplica-
tion has three loops: an inner, middle, and outer. In the inner loop the arithmetic
operations take place. By fixing the inner loop expression and varying the loop indices
I,J, and K, six variants are possible for arranging the three loop indices. Each differs
in how access is to be made to the matrix elements, i.e. by row or by column, as a
scalar, vector, or matrix. Each permutation will have a different memory access pattern,
which will have an important impact on its performance on a vector processur. The
following discussion of the variants is presented only fcr the purpose of demonstration.
However, for real production codes, use of library routines for matrix multiplication is
recommended.

Given the N x N-matrices A and B, the formation of the product A * B = C in the usuai
manner is

DO 1 1
=
1,N

DO 1 J = I,N
DO 1 K = 1,N

1 C(I,J) = C(I,J) + A(I,K) * B(K,J)

after having set C(I,J) = 0.0 for all I,J in a previous step. The vector operation and
data organization is described graphically by means of a diagram introduced by Dongarra
[23)

For the permutation of I and J, reference to the data is made slightly differently, so
that the diagram is of the form

Both algorithms of the forms IJK and JIK are related by the fact that the inner loop is
performing an inner product calculation. For reasons concerning bank conflicts when
access is made to elements in a row of a matrix, the use of inner products is not
recommended on machines similar to the CRAY-l. On the other hand, since an inner product
machine instruction exists on the memory-to-memory machine CYBER 205, one might be
tempted to use it. But this does not result in the quickest procedure.

The algorithms of the form KIJ and KJI are related in that they take a multiple of a
vector and add it to another vector as a basic operation. For the form KIJ the access
pattern appears as:

Every row of B is scaled by an element of A, and the result is used to update a row of
C. For the form KJI we have:LW i [[f* *1
These algorithms are not to be recommended on vector computers since they up-date or
load and store the entire matrix N-times for each pass through the outer loop.

The final two possibilities are IKJ and JKI. Here the access patterns appear as:

for IKJ and

for JKI. These forms are very efficient on the current vector computers for full matri-
ces, when N is sufficiently large. They use multiples of a set of vectors and accumulate
the results in a single vector before storing the vector. Both forms are suitable for a
"CRAY-like" machine, while the latter is superior for "CYBER-like" machines due to the
column-wise operational scheme. As an illustration, we will discuss the latter form JKI
in more detail.

Instead of looking only at one element C(I,J) of the first form IJK, we write down all N
results C(I,J) for fixed J:

. , - d - - _
'

112

C = A11 BIj * A1282 j . .. A IN ,

C2 , =A 2 1 BIj + A22 B2, .. + A 2.NB;

C A B E IJ ANZ B .. . A r S.,

Again a basic column-wise vector structure is recognizable:I) IAN
C2j A21 8+ A 2N .

NJ AN, A,

for the J-th column of C. The vectorized algorithm then has the form

1 C 2 I t 2 / i A IK

C2 : C 2 + A K = 1,.. N.

CIJ J

for every fixed J = 1,2,...,N,. For completeness, we add the following FORTRAN-version
which corresponds to the above mentioned form JKI:

DO 1 J = I,N
DO 1 K

=
I,N

DO 1 1 = I,N
1 C(I,J) = C(IJ) + A(I,K) * B(K,J)

B(K,J) is a constant for the innermost loop which again represents a triadic operation

vector = vector + vector * scalar.

5.2 MATRIX MULTIPLICATION FOR BANDED MATRICES

The main disadvantage of the usual approaches to matrix multiplication, discussed in the
last section, is that they become inefficient for banded matrices with relatively narrow
bandwidths. We will demonstrate this fact by means of the matrix multiplication ofsparse tridiagonal matrices and the application of the form JKI which results in a
pentadiagonal matrix with the column vectors

-K = AK-1,K " BK-I A KK * -K *AK-1 ,K K=1

with

CK -2,K

CK-1 ,K

C CKK

CK+I ,K

C K 2,K-

113

and

oKKK 0

B -,K1BK-1,K 0

-KKK-I §K B KK K+ - BKKK, .

K K BKK BK I,K l

0 0 (BK+2,K+I

Although the vector operations to evaluate the vector C can be treated as a linked
triad for every K, namely

9K A K AK-I §1 K-1,K,KI

the gain in performance is poor, resulting from the maximum vector length of 5 elements.

The key to the solution of this problem is to store the matrices by diagonals instead of
by rows or columns. This storing seems natural for large banded matrices in the sense
that the matrix is defined and stored in terms of very few vectors which are as long as
possible. A second advantage is that the transpose of a matrix A is readily available in
terms of the same diagonal vectors whose elements are stored consecutively in the
memory.

The basic idea is that instead of forming a column of C, we will form a diagonal of C.
Let us consider again the multiplication of tridiagonal matrices. The result is a penta-
diagonal matrix

C-2 ' -1 ' o ' ,

where

0 C11

0 0

o C21
C31

9- CK, K-2 -1 CKK1 0 CKK

CN N 2 NN- CNN

C12 C13

91 CKK.1 ' 2 CKK+2

CNI1N 0N2

0 0

The zeros in the vectors may be omitted but are used here to obtain a homogeneous
structure. The diagonals of A are defined as follows

114

A 1A
A 21~ A A1?

-- KK- -1 K,'

A NP4- A N AN-1,

o 0

and analogously for B. Using the nomenclature of [64J, V(p;q) will denote the vector

V(p;q) =

where M is the vector length of V. We say that V(p;q) has been obtained by displacing
the vector V by p from the top and q from the bottom. The following result can be
verified in a straightforward computation

-2 L t -
(2 ; 1 1 - 1 ;

2
)

-_ I L 0-I(;1) •Bo(0;2) . A0(1 ;1) B_1(1;I)

(I G) B-
(;) (1 ; 0)

. A (0 ; 1)
Bo(G;1) +f (1 ;0) B_ - (1 ;0)

A (0 ;2) . 8 1(1 ;1 A 1 0(;1) 10(;)

92 j (1 ;2) B 1(2;1)

The algorithm is not restricted to the multiplication of tridiagonal matrices. Analogous
algorithms for more general banded matrices may be found in [64]. There a "FORTRAN-like"
algorithm can be found. For full matrices, the start-up costs are about three times
higher for the diagonal algorithm compared to the conventional algorithms described
above. But for narrow banded matrices the diagonal algorithm is much more efficient.

5.3 LINEAR AND NONLINEAR RECURRENCES

The vectorization of algorithms including linear and nonlinear recurrences such as
Thomas-, Richtmyer- and Rusanov-algorithms (see also section 6.3 and 6.7) for the solu-
tion of large, linear systems of algebraic equations with tridiagonal or block tridia-
gonal matrices is in general not straightforward. However, to avoid interdependences
between neighboring grid points in two- and three-dimensional problems, a so-called Red-
Black or ZEBRA-pattern in one dimension (cf. section 5.4) and a parallel evaluation of
the recurrences in the other dimension(s) solve the problem in a rather elementary way
with only a few modifications to an already existing program. This then allows vector
operations on long and contiguously stored vectors and arrays, and maintaining not only
the efficiency of the corresponding recursive algorithm, but also the high potential of
the vector machine.

In the following we shall solve systems of n algebraic equations Au = f with the tridia-
gonal matrix:

A~.. .-. -b -

115

b 2 ' 2 '2

A ")
bn- n 'n- 1 'n- I

bn an

which often arise in practice, e.g. when solving ordinary or partial differential equa-
tions with second order derivatives by discrete numerical methods. There are a number of
related methods for solving this system serially in a time proportional to n. One of
these methods is Gaussian elimination, which for tridiagonal systems reduces to the so-
called Thomas algorithm. It is very efficient with 5n-4 arithmetic operations compared
to n(n**2+3n-l)/3 operations for the complete Gaussian elimination. We explicitly as-
sume, that the LU decomposition of A into the product of a lower triangular matrix L and
an upper triangular matrix U exists. That is, A = L * U where:

L = ". , U .. . •

Yn "I n-1 'n-1

a
n

After computing L and U, it is relatively straightforward to solve the resulting trian-
gular systems of equations:

Ly = f , Uu = y.

The whole algorithm can be expressed in three stages:

decompos i t ion:

al = al
Yi =

bi/Qi-1 i =2,3, . ,n

01i
=

i-li-C i

forward substitution:

91 =fl

gi
=

fi-Yigi-l i 2, 3 ... ,n

backward substitution:

un = gn/an

ui = (g -ciui 1)/o1 i = n-, I.

- -* - ---

The algorithm is stable, if

jal > 1c1 l > 0

a b Ia * Ic ,

bi - ¢i * 0

]an] > Ibn! > 0

which in many applications can be fulfilled. If one of the conditions:

c 1 1 0 , bici 0 , bn ' C

is violated, the system can be reduced to two or more s,,aller systems which are essen-
tially uncoupled.

In solving systems of m partial differential equations there arise systems of algebraic
equations of the above tridiagonal form, but with a block tridiagonal matrix A where the
coefficients are now m x m -matrices. The numerical treatment of the boundary-layer
equations for two-dimensional, incompressible, viscous flows leads to systems with 2x2-
blocks, whereas 5x5-blocks arise in the solution of the Navier-Stokes equations for
three-dimensional compressible viscous flovs. In these cases the above mentioned Thomas
algorithm extends easily to the Richtmyer a.gorithm. The vectorization of the Richtmyer
algorithm will be explained in section 6.7 in further detail.

Unfortunately the three loops in the Thomas algorithm are all recurrences that must be
evaluated one term at a time. The fact that the previous element must be known before
the present one is computed, prevents the algorithm from taking any advantage of the
vector hardware features on a computer since all elements of a vector must be known
before a vector operation is initiated. Hence the algorithm which is the fastest one
solving tridiagonal systems on a serial computer, is highly unsuitable on a vector
computer.

However in all cases that occur in applications there are alternatives solving these
problems [40]. A detailed description for a special example, the mesh generation
algorithm of Thompson ([123], Chapter 6.8) is given in the next chapter.

5.4 ITERATIVE ALGORITHMS

In order to illustrate restructuring of iterative methods for t'-e solution of algebraic
equations resulting from the discretization of partial differential equations, we will
consider the successive over-relaxation (SOR) method for the following model problem.
Let f(x,y) and g(x,y) be ccntinuous functions defined in the interior G and on the
boundary dG, respectively, of the unit square

0 =((x,y I C c K < 1, 0 < y < 3)

We are looking for a function u(x,y) continuous in G + dG. twice continuously differen-
tiable in G, which satisfies Poisson's equation

(1) delta u = a2ui ax
2
+ 82u/ 8y

2
= f(x,yl in G

and the boundary condition

ufx,y) = g(x,y) on dG.

We shall primarily be concerned with the linear system of algebraic equations arising
from the numerical solution of this model problem using two different five-point diffe-
rence equations on a mesh of horizontal and vertical lines with mesh spacing h = 1/(M-1)
for some integer M:

117

(12 12) 1

(1,2 (1,1) (,4)

For a given mesh point (x,y) we approximate the second derivatives of the model problem
by the usual central difference quotients

82u/ax2 . u(x+h,y) - 2 u(x,y) + u(x-h,y) I/ h
2

(2 2u /ay 2 = [u(x,y+h) - 2 u(x,y) + u(x,y-h)]/ h
2

and obtain, for each interior mesh point, one linear algebraic equation of the form

4*u(x,y) - u(x+h,y) -u(x-h,y) - u(x,y+hl - u(x,y-h)

- h 2f(x,y)

With the ordering I = 1,2,..., M of the mesh points in x-, and J = 1,2,...,M in y-
direction, this results in

(3) 4*U(I,J) - U(I+I,J) - U(I-l,) U(IJ+I) - u(I,J-l)
= - j F(IJ)

for the interior mesh points we seek (M-2)*(M-2) approximate solutions U(I,J) of the kM-
2)*(M- 2) equations forming the linear system

(4) AU = b

which, for small values of M, can be solved directly wit the aid of a special variant
of Gaussian Elimination. usually, however, such systems at solved iteratively, and very
often, the Successive Overrelaxation (SOR) method is used in engineering and scientific
applications. Therefore, we choose this method as a basis for our discussion of diffe-
rent variants of SOR and their restructuring with respect to special ve~tor computer
architectures. As example, we o~dr(1) with f(x,y) =I and g(x,y) = (x'4y')/4, with
the exact solution u(x,y) ((x+y)/4. Let

bea special partitioning of the matrix A with diagonal matrix D, strictly lower trian-
gular matrix L and strictly upper triingular matrix U. Thus, given the n-th iterate of
u, one (.etermines the (n+l)th iterate by

(n+l) (n)-i -
(5) u =L u + (I- wL) wD b

w

.ith the identity matrix I, the iteration matrix

Ak-AM1- - __ _ _ _ ______ i_ 112 1 -___ _.A____

i -1

L = (I- wL) wU + (l-w) I

and the relaxation factor w for which 0 < w < 2. For the model problem, the optimal
relaxation factor is (see (99])

cpt I 1 - FZ)

with 4 = cos Th

For programming purpose, it is more adequate to consider the
algorithm point-wise :

(n+l) 1 n) (n+l) (n+l)
U)I,J) = (1 - w) U)IJ) +0.25w (U (I-i,J) + U (IJ-1) +

(6) (n) (n)
U (I+l,J) + U (I,J+l) - h

2
F(I,J)

for I,J = 2,3,..., M-1. For w = 1, SOR reduces to the Gauss - Seidel method

(n+l) (n+l) (n+l) (n)
U (I,J) =0.25 (U (I-1,J) + U (I,J-l) + U (I+l,j) +

(n)
U (I,J+l) - h

2
F(I,J)

which results from equation (3) by using the most recently obtained approximate values
for U(I-I,J), U(I,J-I). It is exactly this feature of the Gauss - Seidel and the SOR
method which makes them not very suitable for vector computers: Vector dependences arise
for both indices I and J. The algorithm is recursive : U(I,J) depends on U11-1,J) and
U(I,J-1). E.g. for fixed J,running with I from 2 to M-1, computing U(I,J) requires U(I-
1,J) which is still in the pipelined functional unit. This dependence is recognized by
the autovectorizing compiler and computation is forced to be performed on the scalar
processor. Otherwise, on the vector processor, the algorithm would degenerate to the
very slowly converging Jacobi method. Thus, the original SOR version (6) is no longer a
powerful method on vector computers. Therefore, it is necessary to find out special
structures of the method which fit the architecture of the vector computer and, further-
more, do not destroy the good convergence property of the method.

One possible modification is the diagonal - wise computation of the U(I,J). The corres-
ponding path through the mesh is shown in the following figure for M = 5

Loop 50

I I I I I
I I I I _ I
I 1 31 61 I
I_ I I I _I
I 21 51 81 I
I I I I _ I
I 4 1 7 1 9 1 I Loop 55
I I I I I

The mesh points 1-6 of the upper left triangle of the mesh including the main diagonal
are computed in DO-loop 50, and the mesh points 7-9 of the lower right triangle are
computed in DO-loop 55:

DO 50 K = 3,5
DO 50 J = 2,K-1

50 U(K-J+1,J) = ...

DO 55 K = 2,3
DO 55 J = 2,5-K

55 U(M-J+1,K+J-1) = .

AIL_ -.-MR-

I L

The inner loops are no longer recursive, which may be realized by a good vectorizing
compiler. Indeed, U5 (which corresponds to U(3,3) in our example) depends on U2, U3, U7
and U8 , but neither on U4 nor on U6 of the same diagonal.

Nt a first glance, this restructuring seems to be the solution of our vectorizat4cn
problem. However, this variant involves very short vectors (worst case: vector length of
l!),and data needed in the inner loops has to be gathered from memory with large stride
M-1 which, for some vector computers, decreases performance dramatically. Therefore,
this variant cannot be recommended for vector computers.

Next we discuss the efficient restructuring of the classical SOR method (6) with respect
to special vector architectures. As a first basis for vectorization we use red-black
ordering of the method (also called checkerboard SOR).

DIFFERENT VARIANTS OF RED - BLACK SOR

Consider a checkerboard with red and black areas each representing one point of our
computational mesh. Each red point has four black neighbors and each black point has
four red neighbors.

-1 1 1+1lwo
MENJ

I W

~Thus, computation of a "red" U1(I,J in formula (6) involves only the four black values

U1(l-l,3), U1(I+1,J), U(1,J-I) and U1(1,+1),

~and vice versa. Red-black SOR, therefore, in a first half step computes all the red

values using only old black values, and in a second half step computes all the black
values using the red values of the first half step. In the literature (see [99)) this
method is a special case of the so-called modified SOR method. The matrix A of (41 has~the special form

(7)]
~where Dl and D2 are square nonsingular diagonal matrices, D1 belonging to the red

equations and D2 to the black equations. If we partition u and b in (4) is accordance
with the partitioning of A, we cun write the yt~ (4) in the for

m

AA
mE"

Thsiopttonfa rd (,)i omua()ivle ny h orbakvle

U(- ,) (+ ,) (I J 1 n (, +)

an ievra e-lc OR hrfri is al tpcmue l h e

vausuigol l lc aus n n eodhl tpcmue l h lc

lI H1 b

H2 D2 .2 b2

or

D1*ul + Hl*u2 = bl
(8)

H2*ul + D2*u2 = b2

Evidently (8) is equivalent to the system

ul = Fl*u2 + cl
(9)

u2 = F2*ul + c2

where

-1 -1 -i -1
Fl = -Dl *Hl, F2 = -D2 *H2, cl = Dl *bl, c2 = D2 *b2

System (9) consists of two half steps mentioned earlier, with vector ul containing all
red values and u2 containing all black values. For programming purpose, the following
partitioning is more suitable and easily implemented:

Do 2 J = 2, M-l, 2
DO 2 I = 2, M-I, 2

2 U(I,J) = ...

DO 3 J = 3, M-2, 2
DO 3 I = 3, M-2, 2

3 U(I,J) = ...

DO 4 J = 2, M-i, 2
DO 4 I = 3, M-2, 2

4 u(I,J) = ...

DO 5 J = 3, M-2, 2
DO 5 I = 2, M-l, 2

5 U(I J) = ...

where M is an odd integer (in applications, M-I often is a power of 2). The arrangement
of the gridpoints is shown in the following figure:

-~Loop

.. . .------ o Lcp -

op I 4-____i~t!1___ __ tLoop5

.I (J __ I {
.. .L I !. . ..! [. . [_

_ I _____

L_

121

However, red-black SOR has several disadvantages, with respect to vector computers,
above all

* vector length is only (M-1)/2
* data are gathered with stride 2.

For most vector computers, short vector length and / or stride 2 reduces performance
drastically. Therefore, it is recommended to avoid short vectors and stride 2, if
possible.

One solution to avoid short vectors is to perform computations under the co:.tol of a
logical mask. The construction of the masks for red-black SOR would loc: like

DO 1 J = 1,M
00 1 1 = IM,
MASKRED (I,J) = .TRUE.
MASKBLA (I,J) = .TRUE.

1 CONTINUE

DO 2 J = 2, M-1,2
DO 2 I = 2, M-1,2

2 MASKRED (1,J) = .FALSE.

DO 3 j = 3, M-2,2
DO 3 I = 3, M-2,2

3 'ISKRED (I,J) = .FALSE.

DO 4 J=2, M-1.2
DO 4 I = 3, M-2,2

4 MASKBLA (I,J) = .FALSE.

DO 5 J
=
3, M-2,2

DO 5 I = 2, M-1,2
5 MASKBLA (I,J) = .FALSE.

This has to be done once at the very beginning of the main program. In the subroutine
then, the two-dimensional arrays have to be equivalenced with long one-dimensional
arrays. The main part of the algorithm, for the red values, has the following form

DO 2 K = M22, MMI
IF (MASKR (K)) GOTO 2
U(K) = (1-) * U(K) + 0.25*Q*
(U(K-M) + U(K-l) + U(K+l) + U(K+M) + HH)

2 CONTINUE

with M22 = M+2, MMI = (M-I) * M and HH = -h
2

, and analogously for the black values.

I

K-M f, -M

If there is a vector mask register in the vector processor, where the 0- and 1-bits of
the logical masks can be stored, the computations are performed under the control of
these masks for vectors with a length of about (M-1)*(M-I)/2.

122

However, these masked operations are time-consuming. To avoid this, the red and the
black values have to be stored contiguously into red and black vectors, respectively, by
hand. We will demonstrate this for a one - and a two - dimensional version.

Let us begin with the two - dimensional version. Four contiguous vectors UI, U2, U3 and
U4 are ccnstru-ed for the elements U(I,J) of the DO- loops 2,3,4 and 5, respectively.
As example, we show the principle for the first and second loop comp-tin; r--!
from black ones:

L= 1
DO 21 J = 2, M-1,2
K 1

DO 21 I = 2, M-1,2
K = K+l
U1 (K,L) = U (I,J)

21 CONTINUE

The next loop involves also the red boundary points:

L=0
DO 22 J = 1,^,2
K=0
L = L+1

DO 22 I = 1,M,2
K = K+l
U2 (K,L) U (I,J)

22 CONTINUE

A similar structure also holds for the last two loops computing the black values. After
this preparational phase, the iteration procedure starts. For the computation of U1
(I,J), e.g., we get

DO 50 J = 2,N
DO 50 I = 2,N
U1 (1,J) = (1-0) * Ul (1,J) + 0.25 *Q* (U4 (I.J-1) +
U4 (I,J) + U3 (I-1,J) + U3 (I,J) + HH)

50 CONTINUE

where N = (M-1)/2+1 is the vector length of Ul along a line y = const. After the
required accuracy has been reached, the elements of Ul, U2, U3 and U4 have to be re-
stored into U and the algorithm is complete.

Similarly cumbersome is the fully one - dimensional red-black version with stride 1.
However, when storing the red values in one long red vector UR with elements UR(K) and
running with K from KSTART to KLAST, the boundary values are overwritten by the corre-
sponding computations. Therefore, after each K-loop, the original boundary values have
to be restored into UR. The same holds for the black vector UB. Here, the gathering of
the black values looks like

K 0
DO 30 J = 1,M,2
DO 31 I = 1,M,2
K=K+l

UB (K) = U (1,J)
UBR(K) = U (I,J)

31 CONTINUE
IF (J.EQ.M) GOTO 30
DO 32 I = 2,M-1,2
KK+ I
UB (K) = U (I,J+1)
UBR(K) = U (I,J+l)

32 CONTINUE
30 CONTINUE

nA&.

123

K-N K+N 1

F -N

-N-1 K-1 K N

K-N-2 K-1 K+N

SI I
UBR is used for checking the accuracy and for saving the boundary values. A similar
preparation holds for UR and URR. Next the iteration procedure follows with the update
of the black and the red values, e.g.

DO 50 K = N2, NM
UB (K) = (l-w) * UB (K) + 0.25 *w* (UR (K-N-l) + UR (K+N)

+ UR (K-1) + UR (K) + HH)
50 CONTINUE

where N2 = N+2, N = (M-1)/2, NM = N * M.

Again, the black and the red values UB and UR, respectively, have to be restored into U
after the iteration procedure has been completed.

Clearly, this one - dimensional long - vector version is the fastest red-black SOR
variant for all vector computers. It is very suitable for those vector computers with
long start - up times and / or stride problems,e.g. the CYBER 205 nd the CRAY-2.
Restructuring two - dimensional arrays into long one - dimensi-nal vectors, however, is
often very cumbersome, above all for more complicated problems in engineering applica-
tions. Thus where possible, this kind of restructuring has to be avoided. In the case of
SOR a new variant is recommended, (43] , which

" avoids stride problems
" preserves long vectors
" is easily implemented
" converges faster than SOR and red-black SOR.

A FULLY VECTORIZABLE SOR VARIANT

The model problem (1) can be discretized not only by the five-point difference equation
(3) but also by the following version:

(10) 4*U(I,J) - U(I+I,J+I) - U(I- ,J+l) - U(I+lI,J-l)
- U(I-1,J-1) - 2hi*F(I,J)

which may be obtained whca rotating the difference operator (3) or using the transforma-
tion

(11) x = (y+x)/SQRT(2) , y = (y-x)/SQRT(2)

Because of the structure of the difference star (" X "), we will call (10) in combina-
tion with SOR the XSOR method.

The accuracy of the approximations (3) and (10) is similar: A Taylor series expansion
yields (with n = 4) the truncation errors of the corresponding difference equations

124

are

- h
2

* (anu/axn + anu/yn) / 12

and

- h
2

* (anu/axn + 6 Onu/ax~dy
2
+ anu/ayn)/ 12

for (3) and (10), respectively, Therefor , the order of accuracy for both approximations
is O(h

2
) with the same coefficient -h /12 of the fourth order derivatives plus, in

addition a mixed derivative term which may cause a reduction in grid size h to obtain
comparable accuracy.

The matrix A of the resulting system of equations is a symmetric M-matrix [991, and
therefore, XSOR converges for all relaxation parameters w with 0< w <2. Let again

A=D-L-U

be a special partitioning of A with diagonal matrix D, strictly lower triangular matrix
L and strictly upper triangular matrix . Then, the maximum eigenvalue of the
corresponding matrix

-1
(12) B = D *(L+U)

leads to the asymptotic rate of convergence of SOR as is defined in [991 . The eigenval-

ues f of B are computed from

det(iiI - B) = 0

or, equivalently,

(13) uvjx,y) = [V(x+h,y+h)+V(x+h,y-h)+v(x-h,y+h)+V(x-h,y-h))/4

which yields

(14) up,q = cos pith * sin qrch

for p,q = 1,2,..., M-1. Thus, the maximum eigenvalue of B is

imax = cos rEh -1 - 0.5n
2
h
2

which is the same as for the classical SOR method, so that the asymptotic rate of
convergence for both methods is identical. In practice, however, convergence of the
XSOR variant is faster Than that of (6): Near the boundary, (6) involves one boundary
Point and two at the corners, while formula (10) involves two boundary points and three
at the corners:

___.____{ i
1 I , { { I I J 11

Therefore, the XSOR variant with the discretization (10) is faster than (6) and even
faster than red-black SOR and ZEBRA-line SOR as described in [39],[40].

The implementation of the new XSOR variant is easy. Only minor changes of the indices of
(6) are necessary.

Now, for fixed index J, r':nning with I from 2 to M-1, U(I,J) no longer depends on the
previously computed U(I-l,J). Therefore, all values U(I,J) for fixed J can be computed
contiguously on the vector processor, as they are stored in main memory.

Some vector compilers do not recognize that the U(I,J) for fixed J are independent, and
the computation is performed on the scalar processor. Here, compiler directives forcing
vectorization are applied successfully.

Only for very short vectors (depending on the vector computer) a further remarkable
improvement in performance may be achieved with the aid of some modificaticns. In the
following, we will briefly discuss several variants such as

* ZEBRA - XSOR, without and with loop-unrolling,
* ZEBRA - XSOR, under control of a logical mask,
* ZEBRA - XSOR, hand-coded one-dimensional version.

For ZEBRA - XSOR the computational mesh is divided into two sets of mesh points, namely
red and black points. For J even, all the points are defined to be red, and for J odd,
all the points are defined to be black. Then, the algorithm (in principle similar to
red-black SOR) looks like

DO 50 J = 2, M-1,2
Do 50 I = 2, M-1

50 U (I,J) = ...

DO 51 J = 3, M-2,2
DO 51 I = 2, M-1

51 U (IJ) = ...

For several vector computers, having vector registers as fast storage devices, it is
sometimes useful to keep data as long as possible in these registers avoiding time-
consuming load and store operations. Within one ZEBRA cycle,e.g., the elements U(I,4), I
= 2,3,..., M-1, are needed for the computation of U(I,3) and U(I,5). Gathering the
computation of the U(I,3) and the U(I,5) into one loop, avoids one load of the vector
U(I,4). In the literature this is called "Loop-unrolling" with a depth of 2. Computing
U(I,3), U(I,5), U(I,7) and U(I,9) for I = 2,3,..., M-1 in one inner loop leads to loop-
unrolling with a depth of four and saves three load (for U(I,4), U(I,6) and U(I,8)). The
structure of the ZEBRA - XSOR algorithm unrolled with a depth of 2 looks like

DO 50 J = 2, M-1,4
DO 50 I = 2, M-1
U (Il) =
U (I,J+2) =

50 CONTINUE

DO 60 J = 3, M-4,4
DO 60 I = 2, M-1
U (Il) =
U (I,J+2) =

60 CONTINUE

DO 61 I = 2, M-1
61 U (I,M-2) = ...

Loop 50 updates all the red values while loop 60 and loop 61 update all the black
values. Loop 61 is necessary in the case where M-1 is a power of 2. Other modifications
are necessary if M-1 is not a power of 2.

Two-dimensional problems involving very short vectors (vector length, e.g., less than
about 20) should be restructured into one-dimensional long-vector versions as is shown
for the classical red-black SOR algorithm in the previous chapter. Again, for ZEBRA -
XSOR, computations are performed under the control of logical masks. The masks are
prepared in the main program. There, the elements

MASKEB (I,3)

are .TRUE. for J even and on the boundary (and .FALSE. otherwise) and the elements

MASKR (1,J)

126

are .TRUE. for J odd and on the boundary (and .FALSE. otherwise). In the corresponding
subroutine, the two-dimensional array U has to be equivalenced with the long one-
dimensional array UD. Then, the main part of the algorithm has about the following form
(with M22 = M+2, 1MI = (M-1) * M, MM = 2*M+1 and 442 = (M-2) * M)

DO 50 K = M22, MMI
IF (MASKR(K)) GOTO 50
Un (K) = ...

50 CONTINUE

DO 55 K = MM, MM2
IF (MASKB(K)) .O3TO 55
UD (K) = ...

55 CONTINUE

In cases where logical masks are expensive (which may easily be tested with the aid of
two or three simple kernels), hand coding the two-dimensional problem into a one-dimen-
sional structure is necessary. This, again, is only recommended for problems with very
short vectors (vector length less than about 20 - 40, depending on the vector computer).
Values U(I,J) for J even (red) have to be stored explicitly into a one-dimensional long
vector UR, and all values U(I,J) for J odd (black) have to be stored explicitly into a
one-dimensional long vector UB

K 0
DO 30 J = 1, M,2
DO 30 1 = 1, M
K K + I
U (K) = U (I,J)
UBR (K)= U (I,J)

30 CONTINUE

K= 0
DO 32 J = 1, M-2,2
DO 32 I = 1, M
K =K + 1
UR (K) = U (I,J+l)
URR (K)= U (I,J+l)

32 CONTINUE

Again, as in the hand-coded long-vector version of red-black SOR, UBR and URR are used
for checking the accuracy and for saving the boundary values which, in every iteration
step, are overwritten during computation of UR and US:

DO 40 K
=

M22, MM2
40 UBR (K) = US (K)

DO 50 K = M22, MM2
50 US (K) = ...

DO 51 K = M, MM4, M
US (K) = UBR (K)

51 UB (K+I)= UBR (K+I)
DO 52 K = 2, MM2

52 URR (K) UR (K)

DO 55 K = 2, MM2
55 UR (K)

DO 56 9 = M, MM4, M
UR (K) URR (K)

56 UR (K+I)= URR (K+I)

with M22 = M+2, MM = 2 * M, MM2 = (M-1) * M/2-1 and MM4 =(M-11 * M/2 - M, where M-1 is a
power of 2. In loops 40 and 52, values of the previous iteration level are stored into
UBR and URR, respectively. In loops 50 and 55, black values are computed from red values
and vice versa. Finally in loops 51 and 56, the "false" bound-rv values in US and UR (at
the horizontal lines y = 0 and y = 1) are overwritten by the corrgct ones. Again, the
implementation of this one-dimensional long-vector version for the new XSOR variant is
by far less cumbersome than for the classical red-black SOR.

RESULTS

For completion, we present some results for the vector computers IBM 3C90 - 200 with
vector features (VF) and for the CRAY-2, together with a brief discussion. On these
machines, the following methods have been implemented:

127

SOROLD: Classical SOR method, highly recursive, structure (3)
SORB1 : Red-black SOR, checkerboard pattern
SORB2 SORB1 with gathering of red values in red vectors

and black values in black vectors which yields
stride one computations

SORB3 SORB2, collecting all red vectors in one long red
vector and all black vectors in one long black
vector resulting in a one-dimensional long-vector
version

SORV : Fully vectorizable SOR method, structure (10)
SORVI SORV combined with SORBI
SORV2 SORV combined with SORB2
SORV3 SORV combined with SORB3

All methods solve the model problem (1) for the Poisson equation in a quadratic domain.
Table 1 gives timings (in seconds) for the IBM 3090VF, table 2 for the CRAY-2, and table
3 presents MFLOPS for the two machines (for only one processor each).

Table 4.8: Timings (in seconds) for the IBM 3090-200VF

N = 31 N = 63 N = 127

SOROLD 0.089 1.46 23.27
SORV 0.041 0.31 5.20

SORB1 0.064 0.88 16.33
SORV1 0.064 0.42 8.21

SORB2 0.065 1.02 13.54
SORV2 0.065 0.47 6.49

SORB3 0.023 0.45 8.56
SORV3 0.025 0.26 5.30

Table 4.9: Timings (in seconds) for the CRAY-2

N = 31 N = 63 N = 127

SOROLD 0.098 1.61 27.55
SORV 0.012 0.08 1.23

SORBI 0.024 0.35 4.60
SORV1 0.024 0.17 2.25

SORB2 0.017 0.21 2.19
SORV2 0.017 0.10 1.15

SORB3 0.007 0.14 1.98
SORV3 0.008 0.07 1.14

Table 4.10: NFLOPS for the IBM 3090-200VF and the CRAY-2

N = 31 N = 63 N = 127
IBM CRAY IBM CRAY IBM CRAY

SOROLD 11.1 10.1 11.4 10.4 10.9 9.2
SORV 20.3 70.1 25.9 95.4 25.3 107.0

SORBl 11.8 31.8 18.4 46.3 15.2 53.9
SORVI 11.9 32.4 18.3 45.6 15.7 57.3

SORB2 11.5 45.9 15.9 76.9 18.3 113.3
SORV2 11.8 44.7 16.4 74.6 19.9 112.0

SORB3 31.8 108.9 35.9 118.8 29.0 125.3
SORV3 29.4 97.2 29.4 109.7 24.3 113.1

* SORV is up to four times faster than SOROLD and up to three times faster than SORB
on the IBM.

SORV is up to 22 times faster than SOROLD and up to four times faster than SORB on
the CRAY-2.

SORV is much easier to implement than any other of the SOR variants.

11

S For the IBM machine, programming a two-dimensional problem in a one-dimensional
structure is only recommended for very short vector length (less than about 30).

* For the CRAY machine, one-dimensional restructuring for all vector lengths yields
much higher performance.

* For the CRAY-2, stride two is a much bigger problem than for the IBM.

* For problems of low vectorizability (e.g. SOROLD), both machines perform
similarly.

* For highly vectorizable problems, the CRAY-2 is up to six times faster than the IBM
309OVF.

5.5 GROUP ITERATIVE METHODS

For group or block iterative methods, groups or blocks of unknowns are improved simulta-
neously. The blocks of unknowns to be improved simultaneously are determined by a
partitioning imposed on the coefficient matrix. Examples are Line Jacobi (LJAC). Succes-
sive Line Over-Relaxation (LSOR) and Alternating Direction Implicit (ADl) methods which
are widely used in engineering codes. We discuss the implementation of this class of
algorithms using the LSOR method. The systems

A ijU j P.

result from the simultaneous solution of the equations along grid lines Y =const. of

4 -1

th icet ein For the modeine pro blemain of sw-etiona 5. be4i nedmnsoa

1 43,

H means HH*I with the identity matrix I and r and Pj are vectors at iteration level
u resp. +1. The optimum value of the relaxation factor for this problem is:

=20I+2a2

with a = sinrth/2. The systems may be solved by the Thomas algorithm (LU decomposition
for tnC-diagonal matrices) presented in section 5.3. The first problem is that the
vector Uj(~I+l) is a function of U(j-1)(u+l) which may be still in the pipe when it is
needed; so, to avoid interdependences of neighboring grid lines, a ZEBRA pattern is
introduced resulting in an even-odd structure of the lines y = const. within each
iteration step:

Jl =2 J2 = Nl
DO 1 K = 1,2
DO 2 J = Jl,J2,2
DO 2 I = 2,Nl
P(IJ) ... arithmetic ...

2 CONTINUE
Jl = 3 , J2 = N2

1 CONTINUE

with Nl = N-1, N2 = N-2. For K=l (K=2), the Thomas algorithms are carried out for all
lines with even (odd) indices. Unfortunately the Thomas-algorithms contain three highly
serial recursions, as pointed out in chapter 5.3. But if we slmultaneously solve all the
"black" systems, and afterwards all the "white" systems, the effectiveness of the algo-
rithm is saved. All that is left to do is to interchange I and J. For the example, this
results in:

Il =2 *12 = NI
DO 1 K =21,2
DO 2 J =(2,Nl
DO 2 I = 11,12,2

2 P(IJ) ... arithmetic
Il = 3 , 12 = N2

1 CONTINUE hl=3, 2=N

129

Without ZEBRA and for omega = 1, this algorithm degrades to Line Jacobi. The interchange
of I and J is necessary to run over the first index of P as it is stored in memory.

An application for this, a mesh-generation problem, is discussed in detail in the next
chapter.

5.6 CYCLIC REDUCTION

The principle of cyclic reduction may also be applied to the direct solution of the
general tridiagonal system of equations. This direct method, which is very suitable for
vector computers (cf. (47], [59], (75]), was originally developed by Hockney [49] and
has been used in direct solutions to Poisson's equation.

The basic idea is to eliminate the odd-subscripted unknowns from the even-numbered
equations and then re-group the even-numbered equations together by row and column
permutations to generate another tridiagonal system of lower order. We will assume for
simplicity that the order n of the system is a power of 2, although the algorithm works
for arbitrary n. By way of an example, we shall consider a system Au = f for n = 8 and
the 8x8-matrix:

A= (T . '.)

-1 21

The first step of the algorithm is to add a multiple (here 0.5) of an odd row to the
even row below it

(odd) -1 2 -1

(even) -l 2 -1

so achieving the following:

(odd) -1 2 -1
(even) -0.5 0 1.5 -1

In the second step we add a multiple (here 0.5) of an odd row to the even row above it:

(even) -0.5 0 1.5 -1
(odd) -1 2 -1

so obtaining the following:

(even) -0.5 0 1 0 -0.5
(odd) -1 2 -1

The even-numbered rows now form another tridiagonal system of equations involving only
the even-subscripted variables:

1 -0.5 2 2[f .5 (f .f3)
-0.5) (U4\ .5* (f3 f5)

(0.5 1 - .5 j05 -(f 5 f)

-0.5 1.5 u8 f 8 o.5. f

The original size of the system was n = 2-2*2 . The smaller system now has size 2"2
The odd-subscripted variables can be computed directly by substituting the known values
of U2, U4, U6 and U8 into the odd-numbered equations, e.g.

131)

U3 0.5 * (f 3 U2 U4).

However, the explicit solution of the 22-system is nct necessary since the above
procedure can be repeated on this smaller system:

(odd) -0.5 1 -0.5

(even) -0.5 1 -0.5

resulting in:

(odd) -0.5 1 -0.5
(even) -0.25 0 0.75 -0.5

and similarly:

(even) -0.25 0 0.75 -0.5
(odd) -0.5 1 -0.5

resulting in:

(even) -0.25 0 0.5 0 -0.25
(odd) -0.5 1 -0.5

Here the smaller system of half the size has a somewhat different form owing to its
smaller size:

with

r4 = f4.0.75*(f3.f5)-0.5*(f2-f6)*0.25*(f.f7)

r8 = f8-0.75*f7.0.5*f6.0.25*f5

This process continues until one gets a single equation in one unknown. Again we have to
add a multiple (here 0.5) of the first row to the second row

(odd) 0.5 -0.25
(even) -0.25 1.25

so that, after three steps, one equation in one unknown, namely U8 ,remains:

1 .125 * U 8 r8 0 .5 * r4 .

Having determined U8, substituting back into the other equations can proceLd. U8 is
substituted into the first equation of the 2x2-system and U4 and U8 are substituted into
the first and third eqiation of the 4x4-system , so computing all the odd-subscripted
variables from the original system and the algorithm is terminated.

A general derivation of cyclic reduction for systems Au = f with a tridiagonal matrix A
is now straightforward. We carry out the same procedure described above to eliminate
references to odd-subscripted variables in the even-numbered equations, using the fol-
lowing elementary row operations:

-06 2i*Row(2i-I) Row(2i) -2i*Row(2il)

with a2i = b2i/a2i-i and 9 2i = c2i/a2i+l . Then the modified tridiagonal system
of equations becomes:

131

(b 2i- 2i *U 2i-2 (a2 -c2 2i -i2i -b2 1 2i)U 2-c2 B2 U2i 2

f 21 - 2if2i-1 -B21f2 i 1 for i 1 ,2,...,2
K-
1

where bl = cn = 0. In general, each step of cyclic reduction reduces a (2**k)*(2**k)-
system to one of size 2**(k-l)*2**(k-1), and after k steps we obtain one equation for
the unknown U2 . Now substitution similar to that described above, yields the final
result.

A vectorization of the reduction steps is now straightforward if the original matrix A
is stored by diagonals. An implementation of the algorithm on vector computers is
discussed in detail in [591.

5.7 SYSTEMS OF NON-LINEAR EQUATIONS

We now proceed to a short description of iterative methods for the soluti-i of ..\stems
of n non-linear equations of the form:

fl(xl,x2,...,xn) = 0
f2(xl,x2,...,xn) = 0

fn~xl,x2,...,xn) = 0

which is also written in vector notation as:

f(xl = 0

with f= (flf2,...,fn) and x = (xl,x2,...,xn) . In general, the solution of non-linear
systems for large n presents some severe difficulties concerning the correct initial
data and convergence towards an unique solution x (if it exists). > t the above system
be transformed intr the equivalent form:

x = g(x) .

One well-known, nonlinear iteration method then is the generalized Newton method:

X
(k

1
)
= g(X (k)

)
= x(k) _ Jl(X(k)) * f(x(k))

where J(x) is th Jacobian matrix defined by

[J(xl)ij
=
bfi P /

It can be shown by means of a Taylor s series expansion about the exact solution x that
under the circumstances that if f(x) has continuous second partial derivatives and the
Jacobian matrix is nonsingular at x and if the iteration prczess determined b, the
generalized Newton method converges at all, it corverges quadratically.

Instead of evaluating J(x(k)) and computing the inverse at each iteration step, we solve
the equivalent sequence of linear systems

J(x(k))X(k'1) = J(X(k)) X(k) _ f(x(k))

provided the Jacobian is non-singular. The matrix J(x(k)) and the ri "t-hand side are
known. These systems must be solved by direct or iterative lineal system solvers.
Vectorization then takes place according to the Irocedures described in sections 5.3-5.5
and chapter 6 and therefore will not be discussed further here.

.. -A .. .,I L . -',b,,- . , a

\

1 32

In practice the Jacobian J(x) of f(x), which should be evaluated at x(k), will not be
re-evaluated at each iteration, but only when necessary to ensure convergence. That is,
if the iteration is converging with fixed J, the time-consuming process of re-evaluating
and triangulating J is omitted.

To illustrate the vectorization of this class of methods, let

5' ,x..,X
x

5
j-:(~

k I
xk1 1~k 5'}

An 'terative scheme of the form:

xk-
)

= x(k) -pk(X(k~i) -f(X
(k i

) , k 0,!

for i = 1,2,...,n is called to be of Gauss-Seidel type. The n*n matrix Pk depends on the
algorithm used. In the important case of diagonal matrices Pk, the iterative scheme can
be written componentwise as:

(W) - 1(k) - Pi(X(k)i

As an example, consider the stationary Burger's equation:

1 W2
7(u)x Uxx

with a diffusion term on the right-hand side. The convective term on the left-hand side
of the equation may be discretized at the mesh point xi by

V)x - 1 (VI 1 - V -) I I V v 2 " " "-i 2
A 1 AX L 2 1

so that the non-linear system of equations takes the form

f(v- (v
2

12V (V -V)-v
2

[-V 2v -v 0i+I -, Vi-1Vi+1 1_ V 'l I i i-1

for i = 2,3,...,n-i, V (Vl,V2,....Vn) and alpha = delta x / 4u 4u. It can be shown
that the Jacobian of the system is a diagonally dominant L-matrix (see e.g. [99). The
positive diagonals of the Jacobian are computed to be:

d i(V) = 2 1a(Vi+1 -Vi_1)

The iterative scheme then becomes:

v k+) ,(k+) (~k) W()
V I vi-1 , " v+)

-V~k) a o((V(k)[2 V (k) v k) - (W~)[(k.[[2)- 7T~ i+l) I Z~ ~ i+ I 1_ I

- v(k) 2V (k) _ Vk)} / / a((k) ,(kl)))
i+1 i i-I Wi i-1

for i = 2,3,...,n-i. In this form the scheme is highly recursive owing to the dependency
between Vi(k+l) and V(i-l)(k+l). However, a vectorization is possible when applying the
red-black re-ordering of section 5.4. In detail, we have two stages:

vk! 1) W ,k (k-7), v(k)
g 1i I , +1

V(I:+1) _ v(k*), V(k), V k 7

for i = 2,4,...,n-2 and n even, which may be evaluated independently. At each stage, the
values of the right-hand side are known.

Under certain assumptions which are similar to those for linear, red-black ordering,
convergence may be proven. However, the author has no knowledge whether or not the
profitable monotone convergence property will be preserved.

&AW

5.8 RUNGE-KUTTA TIME-STEPPING METHODS FOR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

Runge-Kutta methods have a unique place among the classical discrete variable methods
for solving the initial value problem of ordinary differential equations

d- = y' = f(x,y), xEfa,b]

y(a) = yo

where y = (yl(x), y2(x),...,ys(x)) , and the initial value yO is given . The idea is to
construct a formula

Yn-l = Yn - h (xn'yn'h) , n
=
0,1,2,...

which agrees with the Taylor series expansion of y as closely as possible without
involving derivatives of f . An explicit formula of second-order accuracy which requires
two evaluations of f per step is (for s = 1):

Yn-l= y
+

n [f(xnyn: - f(xn h,Yn hf(xn'Y)))

The form of the methods is ideal for practical computations. They do not require any
special starting procedure, in contrast to multistep methods such as Adams-Bashford
method and allow easy change of stepsize. The most well-known formula is perhaps the 4-stage fourth order accurate Runge-Kutta method which, for s - 1, takes the following
form:

Ynwe1 = Yn
+

'I (k1 2k2+2k3*k4

where:

k hf(xnY) , k2 = hf(x ., h y k

h k2
k3 =hf(x+ , Yn*) , k4 hf(xnh, Y,+k3

)

For s = 1 the method is highly recursive and therefore not vectorizable. For s > 1,
however, each Runge-Kutta stage may be evaluated simultaneously for yl, y2,....ys. The
larger the number s of unknowns, the faster the vector algorithm.

The application of the method to partial differential equations is now straightforward
and leads to a large system of ordinary differential equations. By way of an example, we
discuss the implementation of the classical 4-stage Runge-Kutta scheme for the model
problem:

U t = Uxx x CLO1] , t > 0

U(,t) U0 (t) U(1,t) U lt)

U(x.0) 9()

on vector computers. A method that has been studied extensively, is the "method of
lines", also called semi-discrete approximation. The partial differential equation is
reduced to a system of ordinary differential equations by simply replacing the spatial
derivative of the right-hand side by finite differences. Let:

P41 2 -1 2 -1
PV = .V

-1 "2 -1

-1 2

134

be the discretization of the right-hand side of the '±itfff. Lial equation in the dis-
're*- ir'er"

,1
[0,, with step-size delta x and V = (VI,V2,...,Vs). The system of

equations then results in the so-called semi-discrete representation:

dVd NV 0.

The 4-stage Runge-Kutta scheme for the solution of this equation on time level n then
becomes:

w : (n)

w w(O) _ AtPW(0)

- 7w
(2) :

(0) -1 AtPW
(1

)

w
(3) W

(0) -AtPW
(2)

w
(4 w

(0
) - 1 At(Pw(°)2PW(1),2PW(

2
),PW(3))

I (W(),2W(2),W(3) w(O)_At pw(3)

v
(n
-1

) W
(
4
) .

In ([52],chapter 6.8), the scheme has been used to integrate the hyperbolic Euler
equations for inviscid flow in time. There another multistage, two-level scheme of the
Runge-Kutta type is revived, the so-called Gary scheme (1964). Again let n denote the
time level (t = n'delta t), we have:

w(o) = v(n)

wO
I) W w

(0
) - A

t Pw
(0

)

w
(2) : w

(0
) - 1 (W()+ W(I))

At (P .

W
(3)

:W
(O)- At

(pw (0) +pw
(2))

v(n-1) = W(3)

It can be regarded as a Crank-Nicolson scheme with a fixed point iteration which
terminates aftci three iterations. It is oniy second order accurate in time, but has the
advantage that it needs less storage and offers more temporal damping (see [101],
chapter 6.8) than the 4-stage method presented above.

Vectorization of this type of explicit methods is elementary and has been carried out
for 3D aerodynamic simulation by many authors. All the vectors on the right-hand sides
are known when needed. Evaluation of the 4-stage method leads one to the incomplete
Taylor series expansion:

With the aid of Homer s notation for polynomial evaluation and Q = delta(t) * P we get:

w (4 shQ(I Q(-aC(ri I- IQ)))) W (
0

where I is the identity matrix. This involves four equations

135

W W w
n)

W =(I- IQ)W

w (i- Q)W

w = (l- Q)W

W (- Q)W

W
n

W

These linked triads of the form

vector + scalar (vector + scalar vector)

in components, for our example,

W W1+ t .((W _ W)- 2.- Wj)

increase vector performance remarkably. One further advantage is the reduction in sto-
rage requirements which is only one quarter of that of the original 4-stage scheme. In
FORTRAN, the vectorized scheme, without concern for boundary conditions, may have the
following simple form (with IES1 = s-i and DTH = delta(t) /delta(x)**2

DO 1 K
=

1,4
F = DTH/FLOAT(5-K)
DO 1 I = 2,IESI

1 W(I) = W(I)+F*(W(I-I)+W(I+)-2.*W(I))

5.9 SOME REMARKS ON EXPLICIT SCHEMES

Some further notes concerning explicit finite difference and finite volume methods
should be made. Explicit schemes have some remarkable properties. Besides the better
representation of the physical behavior of waves with finite speed, they imply low
storage, easy programming and excellent time-accuracy for transient problems. Moreover,
they have the advantage of being fully vectorizable, because there are no recursive
solution processes and the length of the vectors can be made as long as the number of
computational points or cells. They are easy to divide into subdomains and, therefore,
easy to multitask.

One disadvantage for solutions which vary slowly in time and for steady state calcula-
tions, however, is the restriction of the time step due to restrictive stability
requirements, which results in a much lower convergence rate than for implicit schemes.
It is, therefore, necessary to relax this restriction and improve the convergence of
explicit schemes by, e.g.

• Optimal Runge-Kutta stability bounds

* Enthalpy damping

Local time-stepping and domain-splitting techniques which allow advancing the
solution with different time steps at different grid points, cells or regions of
the mesh

• Higher order spatial discretization, in which case the number of grid points may
be reduced (if the solution is smooth enough) and thereby the time step increased

• Superstep acceleration techniques for parabolic type problems, the time steps
being calculated from the reciprocals of the zeros of certain damped Chebyshev
polynomials, [40],

* Explicit or implicit averaging of the residuals

• Multigrid or simple multiple grid techniques

Unfortunately, some of these recommendations are not very efficient for the solution of
the turbulence-averaged Navier-Stokes equations, so that implicit methods, today, have
yet some advantages over explicit ones (see chapter 6).

AL AM -Af

|36

5.10 LITERATURE

[1] Alefeld G.: On the convergence of the symmetric SOR method for matrices with red-
black ordering. Numer. Math. 39 1982, 113-117.

(2] Ames W.G.: Sparse matrix and other high performance algorithms for the CRAY-i.
Systems Engineering Lab. Univ. Michigan, Report 124, 1979.

[3] Anderson D.V.: Avoiding Common Errors of Multitasking. Several articles in NMFECC
Buffer 1986.

[4] Bailey D.M.: A fast Fourier Transform Without Power-of-Two Memory Strides. NASA
Ames 1986.

(5] Barlow R.H., Evans D.J., Shanehchi J.: Parallel multisection applied to the symme-
tric tridiagonal eigenvalue problem. Computer J. 25 1982.

(6] Barlow R.H., Evans D.J., Shanehchi J.: Sparse matrix vec tor multiplication on the
ICL-DAP. Proc. Conf. on Progress in the Use of Vector and Array Processors 1983.

[7] Brown F.: A high performance scalar tridiagonal equation solver for the CRAY-i.

Dept. Nuclear Engineering, Univ. Michigan 1980.

(8] Bunemann 0.: Complex Arithmetic on the CRAY-2. NMFECC Buffer, Sept. 1986.

(9] Bunemann 0.: Vector FFT for the CRAY-2. NMFECC Buffer, Nov. 1986.

(10] Calahan D.A.: A Block-Oriented Sparse Equation solver for the CRAY-I. Int. Conf.
Paral. Proc. Bellaire, MI 1979, pp 234-239.

(11] Calahan D.A., Ames W.G., Sesek E.J.: A collection of equations solving codes for
the CRAY-I.Systems Engineering Lab. Univ. Michigan, Report No. 133, 1979.

[12] Calahan D.A.: Sparse vectorized direct solution of elliptic problems. In: Elliptic
problem solvers (Schultz, M., ed.), Acad. Press, New York 1981, 241-245.

(13] Calahan D.A.: A vectorized general sparsity solver. Systems Engineering Lab.
Univ. Michigan, Report 168, 1982.

(14] Calahan D.A.: High-performance banded and profile equation solver for the CRAY-i.
I. The symmetric case. Systems Engineering Lab. Univ. Michigan, Report 160, 1982.

(15] Calahan D.A.: High-performance banded equation solver for the CRAY-I. II. The
symmetric case. Systems Engineering Lab. Univ. Michigan, Report 166, 1982.

(16] Calahan D.A.: Task Granularity Studies on a Many-Processor CRAY X-MP. Parallel
Computing 2, 1985, 109-118.

(17] Calahan D.A.: Block-Oriented Local-Memory-Based Linear Equation Solutions on the
CRAY-2: Uni-processor Algo rithms. 1986.

(18] Chen S.C., Kuck D.J., Sameh A.H.: Practical parallel band triangular system sol-
vers. ACM Trans. Math. Software 4 1978, 270-277.

(19] Curtis B.: Local Memory and CRAY-2 Performance. NMFECC Buffer, Sept. 1986.

(20] Dave A., K. and Duff, I.S.: Sparse Matrix Calculations on the CRAY-2. Conf. Leon
Norway, June 1986.

[21] Dongarra J.J., Hinds A.R.: Unrolling loops in Fortran. Software-Practice and
Experience 9, 1979, 219-229.

(22] Dongarra J. J., Eisenstat S.C.: Squeezing the Most out of an Algorithm in CRAY
Fortran. Argonne Nat. Lab., TM No.9, 1983.

(23] Dongarra J. J.: Redesigning linear algebra algorithms. Proc. 1 Int. Coll. on
Vector and Parallel Computing in Scient. Appl., Bulletin de la Direction des
Etudes et Recherches, Serie C, 1 1983, 51-59.

[24] Dongarra J.J. et al.: Implementing Linear Algebra Algo rithms for Dense Matrices
on a Vector Pipeline Machine. SIAM Review. 26, 1984, pp 91-112.

(25] Dongarra J.J. and Duff I.S.: Performance of vector com puters for direct and
indirect addressing in Fortran. Har well Report 1986.

[26] Dongarra J.J., Kaufmann, L., and Hammarling, S.: Sgeezing the most out of eigen-
value solvers on high-performance computers. Lin. Alg. Appl. 77, 1986, 113-136.

&.MMN

137

[27] Dongarra J.J., Sameh, A.H., Sorensen, D.C.: Implementation of some Concurrent
Algorithms for Matrix Factorization, Parallel Computing 3, 1986, 25-34.

[28] Dubois P.F., Rodrigue G.H.: Operator splitting on vector processors. Lawrence
Livermore Lab., UCRL-79316, 1977.

[29] Duff I.S.: The solution of sparse linear equqtions on the CRAY-i. Proc. NATO
Advanced Research Workshop on High- Speed Computation Juelich, 20-22 june, 1983.

[30] Duff I.S., Erisman A.M., and Reid J.K.: Direct methods for sparse matrices.
Oxford University Press, London 1986.

[31] Feilmeier M. (ed.): Parallel computers - parallel mathema tics. i'orth-Holland,
Amsterda, 1977.

[32] Feilmeier M., Roensch W.: Parallel nonlinear algorithms. Computer Physics Comm. 26
1982, 335-348.

[33] Feilmeier M., Joubert G., Schendel U. (eds.): Proceedings of "Parallel Computing
83", North-Holland Publ.1984.

(34] Fong K., Jordan T.L.: Some linear algebraic algorithms and their performance on
the CRAY-i. Los Alamos Scient. Lab., Report LA-6774, 1977.

(351 Fong K.: Several articles on multitasking on the CRAY-2 in the NMFECC Buffer
1985/86.

(36] Fornberg B.: A vector implementation of the Fast Fourier Transform algorithm.
Math. Comp. 36 1981, 189-191.

[37] Gentzsch W.: Recursion algorithms on vector computers. Proc. 1st Int. Conf. on

Vector and Parallel Computing in Scientific Applications, Paris 1983, 79-86.

[38] Gentzsch W.: A Survey on Finite Volume Methods. DFVLR-IB 221-84 A 10, 1984.

[39] Gentzsch W., Schaefer G.: Solution of large linear systems on vector computers.
Proc. Int. Conf. "Parallel Computing 83", North-Holland Publ. 1984.

(40] Gentzsch W.: Vectorization of Computer Programs with Applications to Computational
Fluid Dynamics. Vieweg Publ. Comp., Braunschweig (F.R.G.) 1984.

(41) Gentzsch W.: The Optimal Use of Vector Computers in Com putational Physics. Proc.
SEAS 1985.

[42] Gentzsch W.: Vectorization of Numerical Algorithms Demon strated for the SOR
Method. Regensburg Dec. 1986.

[431 Gentzsch W.: A Fully Vectorizable SOR Variant. Parallel Computing, 1987.

[441 Gentzsch W., Neves, K.: Memories in Supercomputers. Proc. SEAS Montpellier 1987.

[45] Greenbaum A., Rodrigue G.: The ICCG method for the STAR. Res. REP. UCID-17574,
Lawrence Livermore Lab., 1977.

(46] Haendler W. (ed.): Proc. CONPAR 81. Lecture Notes in Computer Science, Vol. 111,
Springer Berlin 1981.

[47] Heller D.E.: Some aspects of the cyclic reduction algo rithm for block tridiagonal
linear systems. SIAM J. Numer Anal., 13 1976, 484-496.

[48] Heller D.: A survey of parallel algorithms in numerical linear algebra. SIAM
Review 20 1978, 740-777.

[49] Hockney R.W., Jesshope C.R.: Parallel Computers- Architec ture, Programming and
Algorithms. Adam Hilger, Bristol 1981.

[50] Johnson O.G., Paul G.: Vector algorithms for elliptic partial differential equa-
tions based on the Jacobi method. In: Elliptic Problem Solvers (Schultz, M., ed.),
Acad. Press New York 1981, 345-351.

(51] Jordan T.L.: A new parallel algorithm for diagonally dominant tridiagonal matri-
ces. Los Alamos Scientific Lab. Report 1974.

[52] Kascic M.J.: A direct poisson solver on STAR. CDC Minneapolis 1978.

[53] Kascic M.J.: Anatomy of a Poisson solver. Proc. Int. Conf. "Parallel Computing
83", North-Holland Publ. 1984.

[54] Kershaw D.S.: The solution of single linear tridiagonal systems and vectorization
of the ICCG algorithm on the CRAY-l. Res. Rep. UCID - 19085, Lawrence Livermore
Lab., 1981.

AL_ -- 1 __-ho

138

(55] Kogge P.M.: Maximal rate pipeline solutions to recurrence problems. Proc. 1. Ann.
Symp. on Comp. Architectures 1973, 71-76.

[561 Kogge P.M.: A parallel algorithm for the efficient solu tion of a general class of
recurrence equations. IEEE Trans. comp., C-22 1973, 786-793.

(57] Korn D.G., Lambiotte J.J.: Computing the Fast Fourier Transform on a vector
computer. Math. Comp. 33 1979, 977- 992.

[58] Kuck D.J., Lawrie D.H., Sameh A.H.: High speed computer and algorithm organiza-
tion. Acad. Press, New York 1977.

(59] Lambiotte J.J., Voigt R.G.: The solution of tridiagonal linear systems on the CDC
STAR-100 computer. ACM Transac tions on Math. Software, 1 1975, 308-329.

(60] Lemke M.: Experiments with a Vectoized Multigrid Poisson Solver on the CDC Cyber
205, CRAY K-MP and Fujitsu VP 200. GMD Report Bonn (F.R.G.) 1985.

[61] Lichnewsky A.: Some vector and parallel implementations for preconditioned
conjugate gradient algorithms. Proc. NATO Advanced Research Workshop on High-Speed
Computation, Juelich, 20-22 June, 1983.

(62] Loehner R., Morgan, K.: Finite Element Methods on Super computers: The Scatter-
Problem. Proc. NUMETA Conf. 1985.

(63] Luk C.: Memory Interleave on the CRAY-2. NMFECC Buffer, Sep. 1986.

(64] Madson N.K., Rodrigue G.H., Karush J.I.: Matrix multipli cation by diagonals on a
vector/parallel processor. Info Processing Letter, 5 1976.

[65] Meier U.: A Parallel Partition Method for Solving Banded Systems of Linear Equa-
tions. Parallel Computing 2, 1985, 33-44.

(66] Natvig J., Nour-Omid B., Parlett B.N.: Effect of the CYBER 205 on the Choice of
Method for Solving the Eigenvalue Problem. (A-sM)x = 0. J. Comp. Appl. Math. 15,
1986, 137- 159.

(67] Oed W., Lange 0.: Transforming linear recurrence relations for vector processors.
Proc. Int. Conf. "Parallel Computing 83", North-Holland Publ. 1984.

[68] Oed W., Lange 0.: On the Effective Bandwidth of Interleaved Memories in Vector
Processor Systems. IEEE Trans. Comp., C-34, 1985, 949-957.

(69] Oed W., Lange 0.: Modelling, Measurements, and Simulation of Memory Interference
in the CRAY X-MP. Parallel Computing 3, 1986, 343-358.

[70] O'Leary D.P.: Parallel Implementation of the Block Conjugate Gradient Algorithm.
Parallel Computing 1987.

(71] Ortega J.M., Voigt R.G.: Solution of Partial Differential Equations on Vector and
Parallel Computers. SIAM Rev. 27, 1987, 149-240.

(72] Radicati G., di Brozolo M., Vitaletti M.: Sparse Matrix- Vector Product and Storage
Representations on the IBM 3090VF, ECSEC Report, Roma 1986.

(73] Reed D.A., Patrick M.L.: Parallel, Iterative Solution of Sparse Linear Systems:
Models and Architectures. Parallel Computing 2, 1985, 45-68.

(74] Robert Y., Sguazzero P.: The LU Decomposition Algorithm and its Efficient Fortran
Implementation on the IBM 3090 Vector Multiprocessor. ECSSC Report, Roma 1987.

(75] Rodrigue G.H., Madson N., Karush J.: Odd-even reduction for banded linear equa-
tions. Lawrence Livermore Lab., UCRL-78652, 1976.

(76] Rodrigue G.H.: Operator splitting on the STAR without transposing. Lawrence Liver-

more Lab., UCRL-17515, 1977.

(77] Rodrigue G.: Parallel Computations. Acad. Press, New York 1982.

(78] Sack R.A.: Relative pivoting for systems of linear equations. Proc. Int. Conf.
"Parallel Computing 83", North-Holland Publ. 1984.

(791 Sameh A.H., Chen S.C., Kuck D.J.: Parallel Poisson and biharmonic solvers. Com-
puting 17 1976, 219-230.

(801 Sameh A.H., Brent R.P.: Solving triangular systems on a parallel computer. SIAM J.

Numer. Anal. 14 1977, 1101- 1113.

(81] Sameh A.: Numerical parallel algorithms - A survey. In: High Speed Computer and

139

Algorithm Organization (Kuck, D.J., Lawrie, D.H., Sameh, A.H., eds.), Acad. Press,
New York 1977, 207-228.

(82] Schmidt H., Schumann U., Volkert H.: 3D Diiect and Vectorized Elliptic Solvers for
Various Boundary Conditions. DFVLR-Mitt. 84-15, 1984.

(83] Schnepf E., Schoenauer W.: Parallelization of PDE software for vector computers.
Proc. Int. Conf. "Parallel Computing 83", North-Holland Publ. 1984.

[84] Schoenauer W., Raith K.: A polyalgorithm with diagonal storing for the solution of
very large indefinite linear banded systems on a vector computer. Proc. 10the
IMACS World Congress on System Simulation and Scientific Computation 1 1982, 326-
328.

[85] Schoenauer W.: The efficient solution of large linear systems, resulting from the
FDM for 3-D PDE's, on vector computers. Proc. 1. Int. Coll. on Vector and Parallel
C puting in Scient. Appl., Bulletin de la Direction des Etudes et Recherches,
Se.ie C, 1 1983, 135-142.

[86] Schoenauer W.: Numerical experiments with instationary Jacobi-OR methods for the
iterative solution of linear equations. ZAM/ 63 1983, T380-T382.

[87] Schoenauer W., Gentzsch W. (Eds.): The Efficient Use of Vectorcomputers with
Emphasis on CFD. Vieweg Publ. F.R.G. 1986.

(88] Stone H.S.: An efficient parallel algorithm for the solution of a tridiagonal
linear system of equations. JACM, 20 1973, 27-38.

[89] Stone H.S.: Parallel tridiagonal solvers. Digital Systems Lab., Stanford Univ.
1974. And: J. ACM 20 1973, 27-38.

(90] Schwarztrauber P.N.: Vectorizing the FFT's. In: Parallel Computations (Rodrigue,
G., ed.), Acad. Press, New York 1982.

[911 Temperton C.: Fast Fourier Transforms on the CYBER 205. Proc. NATO Advanced
Research Workshop on High-Speed Computation, Juelich, 20-22 June, 1983.

(92] Temperton C.: Fast Fourier Transform for numerical prediction models or, vector
computers. Proc. 1. Int. Coll. on Vector and Parallel Computing in Scient. Appl.,
Bulletin de la Direction des Etudes et Recherches, Serie C, 1 1983, 159-162.

[93] Traub J.F. (ed.): Complexity of sequential and parallel numerical algorithms.
Acad. Press New York 1977.

(94] van der Vorst H.A.: A Vectorizable Variant of some ICCG methods, SIAM J. Sci.
Stat. Comput. 3, 1982, 350-356.

[95] van der Vorst H.A.: On the vectorization of some simple ICCG methods. Proc. 1.
Int. Coll. on Vector and Parallel Computing in Scient. Appl., Bulletin de la
Direction des Etudes et Recherches, Serie C, 1 1983.

[961 van der Vorst H.: The Performance of Fortran Implementations for Preconditioned
Conjugate Gradients on Vector-Computers. Parallel Computing 3, 1986, 49-58.

[97] van der Vorst H.: Large Tridiagonal and Block Tridiagonal Linear Systems on Vector
and Parallel Computers. Parallel Computing 1987,

(98] Voigt R.G.: The influence of vector computer architecture on numerical algorithms.
ICASE Report 77-8, NASA Langley 1977.

(99] Young D.M.: Iterative Solution of Large Linear Systems. Academic Press, New York
1971.

140

- ~ ~ ~ ~ ~ hw 6 -- --- -- ----- --

141

CHAPTE 6: COPTATIONAL FLUID DYNAKICS AND SUPERCOMPUTERS (Prof. Dr. Gentzsch)

As is well-known it is most important to optimally adapt codes and algorithms to the
vector or parallel computer in use. One conclusion is that in addition to faster and
larger supercomputers, users must be much better trained than for (scalar) general
purpose computers. Therefore, in the following, we present some details on restructuring
typical numerical algorithms to achieve superior performance on vector computers. The
focus, of course, is on Computational Fluid Dynamics.

During the last two decades computational fluid dynamics (CFD) gained an important
position together with experiments in wind-tunnels and analytical methods. The main
objective of CFD is to simulate dynamic flow fields through the numerical solution of
the governing equations, e.g. the Navier-Stokes equations, using high-speed computers.

The simulation of two-dimensional (2D) inviscid and viscous flows on vector computers
does not represent any difficulties with respect to memory requirements or computation
time. In three dimensions (3D), however, one has to compute about 20 to 30 variables per
mesh point in a 3D-field per time-step or iteration such as the velocity components,
density, pressure, enthalpy, temperature, concentrations, dissipative fluxes, local time
steps, geometry coefficients, dummy arrays etc. The computations in the case of 3D are
therefore restricted to fairly coarse meshes as well as to solutions which are often not
fully converged solutions. The large amount of CPU (Central Processing Unit) time
involved and the fact that the data cannot be contained in central memory are the main
reasons for the long elapsed times for CFD applications. In these cases, the mapping of
the problem onto the architecture of the machine and in particular onto special
organization of the memory must be carefully considered to take full advantage of the
vector computer.

The in-core possibilities of a vector computer with one million words main memory are
fairly restricted, e.g. (depending on the method)

less than 40 x 30 x 20 grid points for Navier-Stokes
less than 50 x 30 x 30 grid points for Euler
less than 160 x 30 x 30 grid points for grid generation.

However, a "Navier-Stokes" mesh must be very fine, say one million grid points, to
better understand the physical flow phenomena, to obtain quantitative results of forces,
and to study dynamic behavior depending on different parameters. The same is true for
the Euler equations, except that viscous flow is not simulated.

During a Workshop [107] some examples of very large problems have been presented for the
Euler solutions on

* 3 x 10E+5 grid points for the DFVLR F4 wing
* 1 x 10E+6 grid points for the Dillner wing
* 2.5 x 10E+6 grid points for the Dillner wing;

for the Euler and Navier-Stokes solutions on

* 1 x 10.5 grid points for hemisphere cylinder;

and for the Navier-Stokes solutions on

* 0.9 x 10E+5 grid points for hemisphere cylinder
* 2.1 x 10E+5 grid points for hemisphere cylinder.

Some authors presented several dense-mesh solutions with much greater details e.g. in
the vortex-shock-wave structure or the separation region for the fine mesh solutions.

The largest problem with 2.5 x 10E+6 grid points has been performed on a CRAY X-MP/48
vector computer with a 128 million word Solid-state Storage Device (SSD). This mesh
required approximately 7 million words of internal memory and 100 million words of
external memory. The CPU time fcr convergence at 800 iterations was 7.9 hours, with a
total elapsed time of 8.3 hours.

The 1 x 10E+6 grid problem has been performed on a CYBER 205 with 16 million 64-bit
words main memory. The data set was 23 M 32-bit words. The CPU time here for 1000
iterations was 2.5 hours with 2.5 hours elapsed time.

From these examples it is obvious that only the fastest supercomputers, namely vector
and parallel computers, with large primary and secondary memories, enable us to solve
large problems in a reasonable time.

142

6.1 SUIUMARY OF A WORKSHOP ON CFD AND VECTOR CCIWERS

In 1985 a workshop on "the efficient use of vector computers with emphasis on CFD" was
organized at the University of Karlsruhe (F.R.G.), and in 1986 the corresponding
proceedings with 18 papers on vectorization and multitasking of CFD codes were published
(107]. The problems treated by the participants cover the wide area of CFD and applica-
tions so that a brief summary of the main topics would be very suitable and informative
for the interested reader. A more general view on advances in CFD then will follow in
the next section.

MAIN BOTTLENECKS OF VECTOR COMPUTERS

An important point discussed in detail are the bottlenecks arising in vector computers,
which are the main reasons for (sometimes sophisticated) restructuring of today's CFD
codes. The early machines, such as CRAY-1 and CYBER 205, had severe bottlenecks which,
nowadays, have been improved o, removed in some machines such as the CRAY X-MP, the
UNISYS ISP and the NEC SX-2 (see chapter 2). To remember, the main bottlenecks for the
CRAY-lM/lS were:

* only one memory access port from main memory to vector
registers which results in one word transfer per cycle (as
with the CRAY-2)

* small main memory

* memory bank conflicts (for noncontiguous vector of constant
stride)

* no gather/scatter hardware instructions

* excessive I/O for out-of-core programs;

and for the CYBER 205:

* max. vector length 65535

* vectors have to be contiguous in memory

" long start-up for short vectors

* no fast secondary storage

* excessive paging for large problems

* poor autovectorizer.

Knowledge of these shortcomings is very important for the CFD user to carry out code
vectorization in an optimal way.

One drawback of most of today's supercomputers is the partitioning of the memory into
memory banks (chapter 2, see also [44] in chapter 5.10).Other additional bottlenecks may
arise for the (few and short) registers and the paths to memory as described in chapter
2 in detail.

To illustrate the decrease of performance due to memory bank conflicts, we present the
performance (in MFLOPS) for the VP-200 depending on the stride of the vectors for
different simple arithmetic operations for two vector lengths. The VP-200 configuration
under consideration has 128 banks in 16 segments, 8 banks each. A similar behavior is
valid for nearly all today's vector computers with memory banks.

TABLE 6.1: VP-200 performance in NFLOPS for 'z=x+y
'

Stride : MFLOPS (N=1000) : MFLOPS (N=60)

1 : 114 : 24
2 : 45 : 23
3 : 85 : 24
4 : 23 : 16
5 : 85 : 24
8 : 21 : 16

16 : 16 : 13
32 : 8 : 8
64 : 4 4

- -- - : - . d i bil lI Im

143

TABLE 6.2: VP-200 performance in NFLOPS for 's=s+x*y'

Stride : MFLOPS (N=1000) : MFLOPS (N=60)

1 : 231 : 48
2 : 90 47
3 170 48
4 : 47 : 36
5 : 167 : 48
8 : 43 : 33

16 : 31 : 26
32 : 17 : 16
64 : 8 : 8

TABLE 6.3: VP-200 performance in IgLOPS for 'z=(x-y)*(x+y)'

Stride : MFLOPS (N=1000) : MFLOPS (N=60)

1 : 239 : 59
2 : 125 : 53
3 : 227 : 56
4 64 : 46
5 : 226 : 57
8 : 59 45

16 : 44 : 34
32 : 23 : 21
64 : 12 : 11

BASIC EQUATIONS

The main problem in CFD is to solve the basic system of nonlinear differential equa-
tions, called the Navier-Stokes equations - consisting of the continuity, momentum and
energy equations - by numerical methods on high speed computers. Because of the compli-
cated nature of these equations, simpler models have also been derived and solved
numerically. (Thin layer Navier/Stokes equations axe given later in Section 6.4.)

While the full potential equation models inviscid irrotational flows, the Euler equa-
tions describe inviscid flows with rotation. On the other hand, viscous incompressible
and compressible, laminar and turbulent flows with e.g. separation are best characte-
rized by the Navier-Stokes equations. In the following, we give a list of the different
governing equations solved by the participants of the above mentioned workshop:

* 2D/3D Poisson equation for different purposes (grid generation,
pressure iteration, Stokes problem)

* 3D full potential equation
* 2D Euler equations
* 3D Euler equations
* 2D Navier-Stokes equations in primitive variable formulation
* 2D Navier-Stokes equations in velocity-vorticity formulation
* 2D Navier-Stokes equations in vorticity-stream-function

formulation
* 2D shallow-water equations
* 3D Navier-Stokes equations in thin-layer formulation
* 3D Navier-Stokes equations (Stokes-problem with incompressible

convection equation),
* 3D Navier-Stokes equations in velocity-vorticity formulation
* 3D Navier-Stokes equations in primitive variable formulation

BOTTLENECKS CAUSED BY THE EQUATIONS AND THE PHYSICS

Because of the non-linearity of the equations, the boundary conditions, the
discontinuities, the complex geometries, the need for time-accurate results for unsteady
phenomena, etc., the numerical solution on vector computers becomes very difficult. Some
important drawbacks arising in the various equations are as follows:

144

for the full potential equation-

* type-dependent discretization for subsonic/supersonic mesh
points.

for the Euler equations-

* time-dependent calculation for the steady state of transonic
flows resulting in long-time computations

* non-physical (extrapolation) boundary conditions at walls,
outflow, and farfield

* need for artificial viscosity or one-sided differences (of
lower order)

" strong gradients near shocks

for the Navier-Stokes equations-

* those mentioned for the Euler equations and, additionally,
* involve second order derivative terms
* thin boundary layer for high Reynolds number flows (stiffness)
* need for high resolutions in regions with strong gradients,

separation, transition, etc.
* turbulence modeling

partly non-physical (extrapolation) boundary conditions
* div U = 0 for incompressible flows and pressure correction

NUMERICAL ALGORITHMS

One possible classification of vector algorithrms has been proposed in [107] dividing the
algorithms into the following three subgroups:

* unchanged general purpose computer algorithms with many recur-
sions, short vector length, which have not been designed for
vectorization

* "vectorized" general purpose computer algorithms which solve
the 2D or explicit 3Z problems very fast, but are not suited
for large data sets

* "vectorized" algorithms for large implicit 3D problems, with
optimal data structure for out-of-core and performance not
limited by the speed of the vector pipes but by the I/O
bottleneck of most of the vector computers

Various numerical algorithms belonging to these groups have been implemented on vector
computers. A detailed description of the vectorization of most of the following algo-
rithms may be found in the individual contributions of [107] and in other papers mentio-
ned in the list of references. We therefore restrict ourselves to listing the
corresponding algorithms:

* Conjugate gradient methods and variants, e.g. ICCG, BI-CG
* FIDISOL - a finite difference solver
* successive line overrelaxation
* LU - decomposition
* LL - decomposition
* fnite volume spatial discretization
* Runge-Kutta time stepping
* MacCcrmack schemes
* van Leer scheme
* Approximate tri-diagonal factorization of Beam and Warming and

bi-diagonal factorization of MacCormack
* FLO 22
* FLO 57
* Osher's Riemann solver
* finite elements
* fourth order space approximation
* alternating direction implicit
* operator compact implicit
* Thomas algorithm
* Uzawa algorithm for Stokes problem
* Chorin's method for pressure correction
* Frontal method for linear systems
* TEACH code
* Fast Fourier transformation
* Poisson solver POISSX, POISSV

_ , • _- . k .-m .-L b ,m ,, -MI-. -

4"

A strategy of vectorization together with many suggestions on how to overcome the main
drawbacks caused by algorithms have been given in the previous chapter. Additioaally in
the second part of this chapter vectorization for several CFD algorithms is explained in
more detail.

FLUID DYNAMIC PROBLEMS ON VECTOR COMPUTERS

A list of fluid dynamic problems treated during the workshop, for different vector
computers, is taken from [137]:

* 2D heat driven cavity
* 3D convective flow
* 3D full potential code for transonic flow past wings
* 3D grid generation method
* Transonic flow past ONERA Mb wing using Euler equations
* Transonic flow past Dillner wing
* Leading-edge vortex flow around Dillner wing
* Flow past airfoils
* 2D shallow water flow problems
* D shock boundary layer interaction
* 2D flow past a cylinder
* Transonic/supersonic channel flow
" 3D transonic flow past a hemisphere-cylinder
* 3D flow around cylinder
* Cooling tower outfall problem
* Laser fusion problem
* Tay±or-green vortex
* Atmospheric flows with long time scales (climate models)

INPUT/OUTPUT TRANSFER

Another problem discussed widely in the literature is the excessive input/output trans-
fer between CPU and (secondary) out-of-core stcrage, which is due to the limited amount
of central memory and/or the extreme data size arising mainly in the computation of 3D
problems.

3D Euler solutions, for example, on meshes containing about 50,000 grid points and 3D
Navier-Stokes solutions on meshes containing about 20,000 grid points, can be obtained
on a machine with one million words of main memory without using extended storage on
disk. These problems are also very suitable for today's mini-supercomputers. Further
mesh refinement, however, is often necessary in order to validate the flow model and to
better understand the physics of the resulting numerical solutions. Therefore. f-r
almost any 3D application, the amount of data to be handled exceeds the core memory size
except on large memory machines. Only the active data can be kept in central memory
while all the remaining data have to be stored on out-of-core storage devices, e.g. on
discs. This results in rather long I/O waiting times. In order to avoid, to reduce or to
speed up I/O transfer for these data during the computations, the following aroposals
may be found in the literature:

Split the computational grid into a few blocks of grid points, often called
zones, substructures, subdomains or simply "blocks". All variables are then
stored in arrays with length equal to the number of points in one zone. Two
examples are the pencil concept and the plane concept. The pencil concept is
used to arrive at long vector strings. In the plane concept a certain number of
planes are contained in the core of the computer, such that all terms needed in
the governing equations can readily be evaluated.

Separate the optimal data selection from the processing of the data, ind develop
a data flow algorithm to optimally handle data blocks in actual use for the
program, e.g. by dynamic data management routines. Strategies used to achieve
efficient I/O operations in this context are random direct access file,
unblocked buffered I/O, file banking, i.e. parallel I/O with several disk
channels.

Use of several time step calculations in each block before changing to the next
block.

In some cases, I/O may even be avoided by recomputing some quantities at each
iteration (e.g. quantities depending only on the mesh and not on the solution
field) rather than to read them from an auxiliary file after an initial
computation. However, the storage of the solution, and the necessary number of
iterations or time levels, depending on the scheme used, limit the possible
reduction of the I/o.

14(6

Perform 32-bit words calculations on CYBER 205 and UNIVAC ISP as often as
possible and 64-bit words only where necessary. This not only results in a
further reduction of I/O but also speeds up the CPU processiag time.

Use faster out-of-core storage devices or vector machines with a much larger main
memory [107]. The CRAY Solid-state Storage Device, for example, transfers data at
rates up to 100 times faster than disk drives. The use of the 128 million word SSD
for a problem with 2.5 million grid points reduced the I/O transfer waiting time
remarkably.

NEAR FUTURE

A conclusion resulting from the contributions of the workshop and some extrapolations
for the foreseeable future have been made by the participants. Besides improvements in

* CPU processing time and
* much larger central memories

for current generation vector computers (such as the CRAY-2 with 4ns cycle time, 4
processors, up to 256 MWords central memory and up to 2 GIGAFLOPS, or the ETA 10/E with
about 8ns cycle time, up to 8 processors and up to about 3 GIGAFLOPS) the computational
fluid dynamicists expect further improvements in vector computer software. Progress is
expected in

* FORTRAN 8X, which will be much better suited for vector computers

* Autovectorizers, which should vectorize many of the items in the earlier mentioned
"checklist" (section 4.5)

* "Automultitaskers", which automatically distribute the work equally among the
different processors (such as for the Alliant FX/8)

* Capability of managing problems with complex geometries or even unstructured grids
which implies handling of irregular data structures

More detailed diagnostics to better support vectorization, multitasking and I/O.

On the other hand, much greater are the improvements to be made by mathematicians,
physicists and engineers in improving and developing new numerical algorithms which

* are more accurate, therefore requiring fewer grid points and less storage

requirements,

are better suited for vector and parallel processors, and

* have a much faster convergence rate than todays algorithms.

Finally, a very close cooperation of the CFD users and the vector computer manufacturers
is of growing importance.

6.2 ADVANCES IN COM11UTATIONAL FLUID DYNAMICS (CFD)

It is nearly impossible to present a complete survey of the advances in CFD as an
aerospace-system design tool because they are proceeding at such a rapid pace that their
capability is not widely known by the aerospace community. Fortunately, in 1985 a
committee has been established by the U.S. Governing Board of the National Research
Courcil to assess current capabilities and future directions of CFD. Based on a nation-
wide survey a study has been published in 1986 [261 reporting on significant findings
and specific recommendations for future directions for three application areas - exter-
nal aerodynamics, hypersonics and propulsions - followed by a turbulence modeling dis-
cussion. The author believes that a synopsis of these subjects with special emphasis on
the numerical solution of the Navier-Stokes equations fi's the purpose of this
AGARD-o-GRAPH in an ideal way.

CFD is becoming an increasing powerful tool in aerodynamic design of aerospace systems
as a result of improvements in numerical algorithms as well as in the processing speed
and storage capacity of new generations of computers. As the next generation of super-
computers becomes available much current CFD work may be expanded to address more
complex configurations, geometries, flight regimes, flow fields, and applications, while
some ot the existing work will become components of more complex systems of solutions to
problems of modeling, code generation, flow field solvers, and flow visualization.
Current CFD methods have only demonstrated an ability to simulate flows about complex

7

geometries with simple physics or about simple geometries with more complex physics. In
general, they cannot simulate flows about complex geometries with complex physics.

An increasing number of issues related to computer science are appearing in the develop-
ment of advanced computational capabilities. As nonlinear codes begin to treat more
complex 3-D configurations, the issues of

* vectorization
* multitasking
* large data bases
* analysis of computed results
* 3-D graphic displays
* surface and grid generation

become increasingly important. In the future stronger emphasis will be on the develop-
ment of more advanced algorithm technology, particularly for the Euler equations and the
various forms of the turbulence-averaged Navier-Stokes equations. One objective is
technology to enable computation of flows about arbitrary and complex geometries in a
practical and accuracy predictable manner. Another objective is for major improvements
in spatial accuracy and convergence. With that, order-of-magnitude improvements are
possible. In the future the overall progress in CFD will depend primarily on four
factors [26]:

* the power and storage capacity of the computers available

• the ability to generate mesh systems for complex configuration

* the construction of algorithms for the solution of the flow field equations which
can deal with discontinuities arising from shock waves and vortex sheets

* the capability for modeling turbulent flows

EXAMPLES OF CFD IMPACT ON AIRCRAFT DESIGN

An extensive review of the development and outlook for computational aerodynamics up to
1979 was given by Chapman [24] in his Dryden lecture. Another state of the art report on
large-scale computing being a very important contribution to the same subject was the
AGARD report no. 209 in 1984 [73]. However, in the context of the present study, three
years after, it is felt that a few more modern examples of the application of numerical
methods to aircraft design problems seem to be appropriate.

[105]. For conventional underwing-mounted turbofan engines, it is desirable for the
vertical location of the nacelle to be close to the wing. This is particularly important
in order to minimize the landing gear length (and hence weight) for safe ground
clearance with the modern high bypass engines. Designers found that if a nacelle was
positioned too close to the wing, the drag increased to unacceptable levels. The source
of this unwanted drag was not made clear by wind tunnel testing, but designers coined a
name for the mysterious quantity. They called it "interference drag".

A computational attack aimed at understanding and resolving this problem was initiated
several years ago. The first step was to calibrate and gain confidence in a computation-
al modeling of the wing/strut/nacelle/plume flow, which took some time and learning. But
with that in hand, three different nacelle installations were analyzed and compared with
experiment, and good correlation between computed and measured drag was obtained. The
important point is that the computation revealed the source of the interference drag,
which the wind tunnel had been unable to do. It was none other than induced or vortex
drag caused by a change in wing span loading due to the presence of the nacelle and
strut. (One asset of computational methods is that it is straightforward to individually
calculate the induced drag, wave drag, and profile drag. The usual wind tunnel test
provides only the total drag).

With that information in hand, the design solution became clear; namely to contour the
nacelle and strut to prevent adverse impact to the spanwise load distribution of the
wing. Properly contoured nacelle and strut design was done much more effectively with
computational methods than with the wind tunnel because computational methods automati-
cally produce finely detailed pressure distributions on all wing, strut, and nacelle
surfaces. In the process, an added bonus was achieved by carefully redesigning the
section shape of the strut to reduce local supervelocity levels that were contributing
unnecessarily to profile drag and that could lead to local shock wave formation at the
higher Mach numbers.

The knowledge and computational experience thus obtained subsequently were applied to
the design of the Boeing 757, 767, 737-300, and KC-135R nacelle installations, enabling
very close-coupled installations to be achieved without incurring a significant drag
penalty. In this instance, computations allowed the achievement of a configuration goal
that was never achieved by 20 years of wind tunnel testing and experimentation (105].

'45W

148

The second example demonstrates the capability of CFD for the solution of a high-lift
problem (105]. A puzzling and potentially serious problem arose during flight test of a
Boeing 707 re-engined with larger diameter CFM 56 engines. The problem was an unexpected
loss of 10 percent in maximum lift capability that appeared during flight test but had
not been predicted by wind tunnel tests. At first, there appeared to be no obvious
experimentally derivable aerodynamic "fix-up" short of extensive full-scale flight
experimentation that would be prohibitively expensive.

Subsequent flow visualization work showed that at wind tunnel Reynolds numbers, the
maximum-lift characteristics of the wing were dominated by the outboard section charac-
teristics. At flight Reynolds numbers, the outboard wing sections benefited from the
increased Reynolds number, and the maximum-lift performance became limited by an unfavo-
rable inboard wing boundary layer/nacelle vortex interaction. Thus, dfferent physi-
cal mechanisms were dominating the maximum-lift characteristics at wind tunnel and
flight conditions.

Hence, the puzzle was solved, but the problem was not. The traditional approach would be
to embark on an expensive and time-consuming flight test fix-up program. However, with
the availability of computational tools, a quite different approach became feasible. The
approach was to find a way to simulate the full-scale aerodynamics, rather than the
full-scale geometry, in the wind tunnel. This required the use of computational tools
with design (inverse) capability.

It was a straightforward procedure with computational tools to design an outboard
leading edge device to forestall outboard separation at wind tunnel Reynolds numbers.
This device was fitted to the outboard wing of the wind tunnel model. (Note: at no time
was it intended to fit such an alternative leading-edge device to the full-scale wing).
In this way, the outboard wing behaved at wind tunnel Reynolds number very much like the
full-scale wing in flight; that is, nacelle vortex/wing boundary-layer :nteractions now
determined the stall phenomena in the wind tunnel.

Having now radically adjusted the wings stall patterns in the wind tunnel, attention
could turn to possible modifications to improve the maximum-lift performance. A simple
fix in the form of a nacelle-mounted vortex control device was found that delayed the
stall of the inboard wing associated with the nacelle vortex phenomenon. Thus, no
change to the baseline high-lift system of the full-scale airplane was required, and the
baseline flight level maximum-lift performance was fully regained.

In this case, computational methods provided an effective approach to solving a problem
that could not have been done solely through wind tunnel testing, and it is a very lucid
example of the complementary relationship between the wind tunnel and CFD 1105).

CODES FOR AERODYNAMIC FLOWS

(Linear) panel codes and (nonlinear) small-disturbance codes nowadays are in regular use
within every major aerospace company. The computer requirements for these codes are
modest - less than one-half million words of memory and a few minutes of CPU-time on a
Class VI computer are required for simple wing-body combinations. Therefore a careful
and time-consuming hand-vectorization for these codes is not necessary. Similar
considerations are valid for the different full-potential transonic codes. There a
vectorization may be performed for the subroutines containing the algebraic systems
solvers, for example a Successive Line Overrelaxation (SLOR) method (see section 6.3).

In recent years a strong focus has been on Euler and Navier-Stokes code development.
Several methods are under continual refinement. For the Euler equations the most widely
used methods fall into two broad classes:

1. Central-difference methods with dissipation terms added to
enhance stability and to provide smoothing of shock
profiles.

2. Upwind-differenced flux-splitting and total variation
diminishing methods.

The first class of methods usually requires some undesirable tuning to obtain near-
optimum values of the coefficients for the added dissipation terms. The methods are
relatively simple compared to those of the second class, which require less tuning. Both
classes are extendible to the viscous Navier-Stokes equations. Vectorization for the
explicit methods such as Runge-Kutta time-stepping Finite-Vulume algorithms (52] is
straightforward. For the implicit methods based on e.g. Beam and Warming's scheme
(ARC3D, [97)) vectorization is performed in planes normal to the surface of the body. An
example is given in section 6.6.

Parabolized Navier-Stokes (PNS) codes are being used extensively to compute steady
supersonic and hypersonic flow about streamlined bodies. In the parabolizing approxima-
tion the streamwise viscous terms are dropped and a modified streamwise pressure gra-
dient is introduced to allow space marching from upstream initial data. Because only one
pass through the grid is required these procedures are computationally efficient.
Current development activities with PNS are centered about the inclusion of real gas
effects and finite-rate chemistry. Vectorization again may be carried out in planes

a
-

i4y

normal to the surface, where often systems of equations could be solved in parallel. The
cost of real Navier-Stokes applications has restricted their use to specialized applica-
tions, primarily 2-D flows and limited regions of 3-D flows. Most of the applications so
far have used simple algebraic turbulence models with the Reynolds-averaged, thin-layer
Navier-Stokes (TLNS) approximation. The TLNS uses body-fitted meshes so that all of the
diffusion terms tangential to the solid boundaries can be conveniently dropped from the
equations. This eliminates the need to treat meshes that are fine enough in all direc-
tions to resolve properly all the viscous derivatives. A crude estimate of the number of
mesh points required to obtain a reasonably accurate solution of the TLNS is twice the
number of mesh points as for a good Euler solution. Computer time required for present
TLNS codes for even an isolated wing ranges from 2 to 8 hours on a CYBER 205 or CRAY X-
HP. Because of the importance of TLNS codes for todays CFD we give a more detailed
description on TLNS simulations using vector computers in the next section.

Algorithm development for full 3-D Navier-Stokes equations is still in a primitive
state. Algorithms need to be improved in speed of convergence (from thousands of
iterations down to hundreds) without suffering serious loss in performance and
robustness to high aspect ratio meshes and artificial viscosity. New efficient,
solution-adaptive meshes should track and resolve shocks, vortex structures, boundary
layers, wakes, and free shear layers. Work to date has been mostly with global,
nonadaptive, body-fitted grids for single components such as an airfoil, wing, isolated
nacelle or hemisphere cylinder. However, promising research has shown the possibilities
afforded by overlapping embedded grids, zonal body-fitted grids, and finite-element-type
tetrahedral grids.

For unsteady aerodynamic flows - structural dynamics, flutter, and active controls -
less emphasis has been on the development of CFD methods. Several of the methods in
common use for steady aerodynamics can be used in a time-accurate, unsteady mode. To
date computing costs required to carry out time-accurate calculations, however, are
prohibitive except for perhaps very specialized applications.

CODES FOR HYPERSONIC APPLICATIONS

A major complication of hypersonic CFD in the upper atmosphere is that the continuum
fluid model is not realistic for all hypersonic flight conditions of interest. At higher
altitudes where the mean free path of the molecules becomes of sufficient magnitude
relative to the vehicle dimensions, the continuum model breaks down. Here particulate
flow simulations must be employed wherein the motion of a large number of molecules is
computed, such as in the direct Monte Carlo simulation. Vectorization of this type of
methods is very cumbersome, and up to now not very efficient. An example for the vecto-
rization of a Monte Carlo code calculating the flow around a flat plate is given in
[40].

Another complication for hypersonic flight is that the conventional continuum Navier-
Stokes equations even in the lower atmosphere can be unrealistic or are of uncertain
accuracy .

Hypersonic aircraft configurations are geometrically less complicated, and are thus more
amenable to realistic 3-D grid generation. For flight in the lower atmosphere with
equilibrium air chemistry, the feasible CFD applications would be generally similar to
those mentioned previously for conventional aircraft.

In this case only a modest extension of supersonic aircraft CFD is necessary wherein
real gas, equilibrium, thermodynamic properties of air are used in place of a perfect
gas. However, for complex 3-D flows involving separated flow or inlet and airframe
integration, for example, current codes are far from maturity. Codes for hypersonic
flight in the upper atmosphere require much more computation time because of the
numerous species continuity equations that must be solved simultaneously with the
equations of fluid motion. Thus, the efficiency of numerical algorithms is an important
aspect of this type of code development, and optimal vectorization for these codes is
necessary but not straightforward.

CODES FOR PROPULSION APPLICATIONS

Propulsion system elements can be categorized into three major systems, namely
stationary systems including inlets, nacelles, diffusers, and nozzles; rotational
systems including fans, compressors, turbines, propellers, and helicopter rotors; and
finally combustors including both combusting and noncombusting elements. Because this
complexity of propulsion systems is difficult to reproduce experimentally advanced
computer programs are used both to design an experiment and to predict the results, so
that CFD plays the added role of a basic data source, helping to identify the dominant
physics. For propulsion applications a wide variety of CFD codes are available based on
different models such as inviscid models (full-potential and Euler equations), classical
boundary-layer approaches (transitional and turbulent), inviscid interaction approaches,
using both integral and finite difference (or volume) techniques, and composite viscous
approaches employing the parabolized Navier-Stokes equations with spatial marching
procedures for both subsonic and supersonic flows. Vectorization of these codes is
performed planewise, very similar to those mentioned in the previous section for the
thin-layer Navier-Stokes approximation.

The general approach used to attack the problems in combustors employs algorithms to
solve the full turbulence-averaged Navier-Stokes equations. Here the two principal
difficulties appear to be elimination of numerical diffusion and modeling of real
turbulent diffusion. A better numerical representation of 3-D thin viscous shear layers
between regions of forward and reverse rotational flows is needed to avoid the need for
massive computer resources in representing the critical physics. To date, however, the
use of the turbulence-averaged Navier-Stokes equations is generally considered too
expensive for practical applications, even with the advent of the modern supercomputers.

TURBULENCE

Turbulence modeling is becoming a pacing item in the development of CFD codes for many
engineering design applications. The large-scale features of turbulent flows are strong-
ly dependent on the flow geometry and environment. Small-scale turbulence, which adjusts
more rapidly to changes, tends to be more isotropic but also reflects the environment in
which it is embedded. The large-scale motions are responsible for turbulent transport,
and the small-scale motions provide intimate molecular mixing. With a turbulence MODEL
one tries to represent the average effects of these complex processes on the mean flow.
In turbulence SIMULATION one includes the large-scale, time-dependent motions in the
computation.

The unsteady Navier-Stokes equations are assumed to describe the flow in full detail,
including viscous flow phenomena and diffusive energy and species transport. Direct
numerical solution of these equations for practical engineering flows at moderate and
high Reynolds numbers, accurate to all temporal and spatial scales of motion, to date is
impossible. Most engineering computations, instead, are based on the averaging procedure
developed by Reynolds, which is called turbulence-(or Reynolds-) averaged Navier-Stokes.
Various other averaging methods are in use or are expected to be used in the near
future. A complete discussion of all categories of turbulence models (such as algebraic
and K-epsilon models) will be omitted here. In many of today's codes the significance of
turbulence modeling is masked by excessive numerical diffusion in the algorithms. Once
this numerical diffusion is eliminated the significance of the turbulence model will
become clearly evident. It is anticipated that turbulence modeling will be an essential
element in CFD codes for the near future. Unfortunately, methods of improving turbulence
modeling (e.g. full turbulence simulations or large eddy simulations) are extremely
expensive because of very heavy computations on even the fastest available supercom-
puters and because of the sophisticated procedure of implementation.

CFD AND COMPUTER HARDWARE

Taking into account the evolution of CFD and computer hardware during the last 15 years,
certain future trends are evident. As the cost of fast computer memory decreases, the
appearance of memory-intensive models using many millions of words of primary data is
already beginning to influence algorithm selection in favor of faster, more efficient
algorithms that make less use of each computational degree of freedom, which means that
much more data will have to be analyzed and stored in the future. Fine-grained paralle-
lism, through pipelining and vector processing, has taken over the supercomputing scene
in the last 15 years. Because of the limitations imposed by the speed of light and
component technology, tihe trend toward increasingly extensive parallelism will continue
in the future. Several supercomputers are multiprocessors, and already systems with
thousands of small processors are being produced and sold commercially. Different
algorithms will appear to be most favorable for this kind of supercomputing, and new
programming methodologies will have to be adopted. In some cases, simpler, less-accurate
solution algorithms and grids will be adopted because they lend themselves better to
computation on highly parallel processors. In other cases the mathematical models them-
selves will evolve to reflect the computer systems on which they are being implemented.

Furthermore, interactive graphics methods and the associated hardware and software will
become absolutely crucial to monitoring, interpreting, understanding, and presenting the
computational results. Although these are not new issues, they are becoming dominant
considerations for the future.

6.3 VECTORIZATION OF A MESH-GENERATION CODE

For the numerical solution of systems of partial differential equations, like the Na-
vier-Stokes system, the computational domain is dis-retized into many subdomains. On an
uniform grid the equations are easily discretized. However. in the case of a body with
arbitrary shape, the numerical treatment of the boundary conditions is greatly
simplified only by the use of a curvilinear or even irregular computational mesh system,
which is conformable to the body surface, as well as to other boundaries, in such a way
that the boundaries are mesh lines (20],[123].

Among the many possible choices for the partial differential equations to be solved in
the grid generation process most investigations to date have used sets of elliptic
equations derived from Laplace's or Poisson's equation (123]. The use of elliptic equa-
tions, particularly those whose solutions only have extrema on boundaries, such as
Laplace's equation, has several attractive features. Firstly, boundary data must be

specified on all boundaries, thus this method is particularly suited to constrained
(e.g. internal) flows or flows where an outer free stream boundary can be specified,
while the extremum principle ensures that the mapping is univalent (i.e. grid lines do
not cross over). Furthermore, since Laplace's equation describes a range of physical
phenomena, physical considerations may sometimes help in choosing suitable grid control
parameters. For example, with suitable boundary conditions the grid obtained consists
of streamlines and equipotential lines and the addition of extra source or sink terms
(i.e. replacing Laplace's equation by Poisson's equation) allows some control over the
shape of these lines. Finally, it should be noted that conformal mapping in two dimen-
sions is a special case of grid generation using Laplace's equation.

Although some work had been reported previously, the major investigation and development
of grid generation using Laplace's and Poisson's equations has been done by Thompson
(1979) and his co-workers [123].

Figure 6.1: Basic mapping using elliptic equations (20).

II

To describe the basic Thompson technique using roisson's equation consider the case
shown in Fig.6.4 in which a general quadrilateral in physical space is mapped to a unit
square in transform space. The coordinates in physical space are (xy) and in transform
space are (u,v) and it is assumed that x and y are known functions of u and v on all the
boundaries (i.e. the grid point distributions are specified along the boundaries).
Assume that u and v individually satisfy Poisson's equation (expressed in terms of x and
y) inside the unit square subject to the known Dirichlet conditions on the boundaries,
i.e.

82u/axa + 8
2
u/ay

a
= P

82v/Ox
2

+ 8
2
v/ay

2
= Q

where the source terms P and Q are both functions of x and y. In order to obtain a grid

in physical space, it is necessary to interchange the dependent and independent variab-
leo 6- ,"t the equations may be solved numerically for x and y on an equally spaced
grid in transform space. The Dirichlet boundary conditions for the inverted equations
are the known values of x and y at each point on the boundary of the unit square in
transform space. Note that in tensor form the extension to three dimensions is irmme-
diate.

The inverted equations can, in principle, be solved by any convenient method. However,
in practice the usual approach has been to discretize the equations using three point
central difference approximations for all derivatives and solve the resulting set of
difference equations using a line relaxation scheme.

Such schemes are widely used in scientific and engineering codes. Because of their
highly recursive nature, we present restructuring with respect to vector architecture in
more detail. The most general approach for block iterative methods resulting from sys-
tems of partial differential equations (sometimes called Richtmyer's algorithm) will be
presented in chapter 6.6 in the context of Beam and Warmings approximate factorization
scheme.

We now start from the transformed elliptic equations

Aa
2
x/8u

2
+ B8

2
x/av2 - Ca

2
x/8u~v +&Pbx/8u + Qbx/av = 0

Aa
2
y/Ou2 + Ba

2
y/av

2
- Ca

2
y/auOv + Pay/au + Qay/av = 0

with metric coefficients A, B and C containing themselves derivatives of the solution x
and y. These equations can be discretized using central difference quotients (with delta
u = delta v = 1 in the computational space). The result is (for the unknown x) the
following difference equation

A (X(I+l,J) - 2 K(I,J) + X(I-1,J)) +
B (X(I,J+I) - 2 * X(I,J) + X(I,J-l)) -
0.25 * C * (X(I+I,J+I) - X(I+l,J-l) - X(I-I,J+1) + X(I-1,3-1))
+ 0.5*P*(X(I+l,J) - X(I-1,J)) + 0.5*Q*(X(I,J+I) - X(I,J-l)) =0

• h,.,.d.,,.
, -8 ' d l~ d ' l

-As -,,,,d v... ..-. - -

t52

and analogously for the unknown y. Usually a relaxation scheme (with relaxation factor
OM) is applied to these equations:

(n+l) (n) (n+l) (n+l) (n+l)
X(I,J) = X(I,J) + OMI*(A*(X(I+I,J) - 2X(I,J) + X(I-l,J))

(n) (n) (n+l)
+ B*(X(I,J+I) - 2*X(I,J) + X(I,J-))

(n) (n+l) (n) (n+l)
- 0.25*C*(X(I+,J+l) - X(I+l,J-l) + X(I-,J+l) + X(I-l,J-l))

(n) (n) (n) (n)+ 0.5*P*(X(I+l,J)-X(I-I,J))+0.5*Q*(X(I,J+I)-X(I,J-1)))

for every line J = const. and OMI = OM/(2*Bl. This is a system of algebraic equations
for the unknown X(I,J) , I = 2,3,..., N-i. It is linear if the coefficients A,B, and C
are evaluated at the previous iteration step n. Solving these equations for the diffe-
rences

n+l n
RX(I,J) = X(I,J) - X(I,J)

simplifies the systems to

-A*RX(I-I,J) + (2*A+2*B/OM) * RX(I,J) - A*RX(I+l,J)
= RES(I,J) + B*RX(I,J-l) + 0.25*C*(RX(T+I,J-I) - RX(I-1,J-1))

for every J = 2,3,..., N-I. RES(I,J) is the (residual) value of the difference equation
at the grid point (I,J). These systems for the RX(I,J) then are solved by the Thomas
algorithm (see chapter 5). The final solution at the iteration level n+l is

n+l n
X(I,J) = X(I,J) + RX(I,J).

As pointed out in chapter 5, the Thomas algorithm is not suited for vector computers
because of its highly recursive structure. A slightly modified version for the matrix

ddl aal
aa2 dd2 aa2

A=

aam ddm

with only N divisions (instead of 2N-1 for the original algorithm) may have the follow-
ing form:

D(l) = I. / DD(l)
DO 40 I 2,N
R(I(= AA(I) D(I-I)
D(I) = 1. 1 (DD(I) - AA(I-l) * R(1))
RX(I) = RX(I(- RX(I-l) * R(I(

40 CONTINUE
RX(N) = RX(N) D(N)

DO 50 K = M-l, 1, -1
RX(K) = (RX(K) - AA(K) * RX(K+I)) * D(K)

50 CONTINUE

with, at the beginning, RX containing the right-hand side of the system. Vectorization
of the three recurrences may be achieved, for example, by solving all the systems for J
= 2,3,..., N-i in parallel. However, running over the second array index J will cause
data to be fetched from memory with a large stride, which has been observed to degrade
performance in many vector architectures. It is, therefore, more appropriate to solve
systems of equations along lines I = const. in parallel then running over the first
array index I = 2,3,..., N-1. The corresponding relaxation scheme for lines I = const.
yields (with OMI=OM/(2*A))

(n+l) (n) (n) (n) (n)
X(r,J)=X (,J}+OM1-(A*(XII+I,J)-2*X(IJ)+X(I-IJ))

(n+l) (n+l) (nil)
+B*(X(I,J+I)-2*X(IJ)+XIJ-I)

(n) (n) (n) (n)-0.25*C*(X (I+IJ+I}-X (+I,J-I)-X (-I,J+I)+X(I-IJ-I)

(n) (n) (n) (n)
+0.5*P*(X(I+I,J)-X(I-I,J))+0.5*Q*(X(I,J+I)-X(I,J-1))

Comparing this with the original relaxation scheme one recognizes that the first scheme
will converge faster because more unXnown values are updated iimediately (6 compared to
3 for the second scheme). The reason is that the neighboring values for I-i and I+1 are
not yet available for the iteration level n+l because of the parallel evaluation of the
systems. Therefore, convergence for the latter algorithm will be slower which is more
than compensated by the much faster execution speed on most vector computers. Introduc-
tion of the differences

(n+i) (n)
RX(I,J) = X(I,J) - X(I,J)

leads to the systems

-B*RX(I,J-I)+(2*B+2*A/OM)*RX(I,J)-B*RX(I,J+)=RES(I,J)

for every I = 2,3,...,N-i. The final solution at the iteration level n+l is

(n+l) (n)
X(I,J) = X(I,J) + RX(I,J).

As mentioned earlier, these systems can be solved in parallel using vectors with element
indices I = 2,3,...,N-i, pointing to contiguously stored elements. The parallel Thomas
algorithm then reads

DO 400 I = 2,N-1
400 D(I,I) = i./ DD(I,l)

DO 401 J = 2,N
DO 401 I = 2,N-1
R = AA(I,J) * D(I,J-l)
D(I,J) =1./(DD(I,J) - AA(I,J-1) * R)

401 RX(I,J) = RX(I,J) - RX(I,J-l) * R

411 RX(±,N) = RX(I,N) * D(I,N)

DO 501 K = M-1,1, -1
DO 501 I 2, M-1

501 RX(I,K) = (RX(I,K)- AA(I,K) * RX(I,K+I)) * D(I,K)

This system is fully vectorized and runs with maximum execution speed. However, as
pointed out before, the convergence is worse compared to the original relaxation scheme
because of the parallel evaluation of all systems I = 2,3,..., N-i. This can be improved
by introducing a ZEBRA structure within the algorithm, thus solving, in a first half
iteration step, the systems for all even I = 2,4,..., N-i and in a second half iteration
step, the systems for all odd I = 3,5,..., N-2. For the even systems, the odd neighbors
have been updated just before, and vice versa. This, then, leads to a much better
convergence behavior of the algorithm. On the other hand, vector performance is somewhat
reduced because data now are fetched with a stride of 2 and the vector length is halved.
The overall improvement, therefore, depends very much on the special vector computer
architecture.

AWL.~---- - ~ ~ -

154

6.4 THIN LAYER NAVIER STOKES SIMULATIONS ON VECTOR COMPUTERS (Dr. J. L. Stager)

Over the last several years, versatile computer codes have been developed for large
scale computers which can solve steady or unsteady and inviscid or viscous flow c.f.
[1311-[144]. These codes are based on using finite differerce and finite volume
approximations to the Euler and Navier-Stokes equations, and they generally use
curvilinear body conforming discretization processes. These methods have proven to be
quite satisfactory insofar that wave propagation, viscous layers, shock waves, and
unsteady motions can all be treated. In high Reynolds number viscous flow simulation,
the use of a body conforming curvilinear discretization process is essential to simplify
the application of boundary conditions, to efficiently cluster to thin shear layers near
the wall, and to make simplifying assumptions such as the thin layer viscous flow
approximation. Generally a structured (well-ordered) grid is used for the curvilinear
discretization and such a well ordered grid enhances the use of vector computers. It
also allows tise of certain efficient numerical solution schemes that rely on directional
splitting techniques such as locally one dimensional split schemes, alternating
direction implicit (ADI) and approximate factorization (AF).

6.4.1 Governing Equations

On a body conforming curvilinear coordinate the Euler and Navier-Stokes equations can be
solved by the integral or finite volume method, or the finite difference method by
introducing new independent variables. In either case the equations are solved in a
conservation or divergence form to allow the capturing of shock waves as numerically
accurate as possible.

In the new independent variables the transformed equations can be represented as
(c.f. [133], [145] for the detailed terms):

where the original dependent velocity variables are maintained. (The flux vectors of the
transformed equations can be made to resemble their Cartesian counterparts by combining
terms into contravariant velocity components (1331.) If a body conforming coordinate is
used, then for high Reynolds number flow it is generally permissible to make a thin
layer assumption and to discard viscous terms except for those in the normal-like direc-
tion. If C is the coordinate away from the surface, the thin layer equations can be
represented as (133]

O+ k + a d + a h = Re-' § (2)

where the viscous terms in have been collected into the vector S and the nondi-
mensional reciprocal Reynolds number is extracted to indicate a viscous flux term.

In differencing these equations it is often advantageous to difference about a base
solution denoted by subscript 0 as

6,Q- Q.) + b4e -Lo + 6,,If-F) + 6 (G - G)-RO, 6(§ - (3)

= -a, o - ao - 0,o - 0,(% + R,-'O.

where 6 indicates a general difference operator, and a is the differential operator.
If the base state is properly chosen, the differenced quantities can have smaller and
smoother variation and therefore less differencing error.

6.4.2 Implicit Finite Difference Algorithms

Both explicit and implicit numerical algorithms have been written to solve these equa-
tions. Generally implicit solution algorithms are preferred for viscous flow to avoid
excessively restrictive numerical time step restrictions in unsteady flow calculations
and to enhance iterative convergence in steady state calculations. (Various ways to
enhance essentially explicit schemes include use of multigrid, e.g. (1461 and (147] and
various embedding schemes, e.g. (148]. Even for inviscid flow problems in which the
grid spacing is not as refined, the use of implicit schemes can be advantageous insofar
that time step restrictions can be based on accuracy considerations alone. Moreover one
need not be too concerned if the grid spacing is inadvertently too refined or distorted.

Because the Euler or Navier-Stokes equations are nonlinear, a fully implicit scheme
either requires that for each time step taken an iterative solution process be carried
out, or a local linearizatior be carried out based on a previous time step and that a
complete inversion of the linearized equations be carried out. Both procedures are
costly and generally some type of simplification is used that falls within the accuracy
of the differencing process. Typical of these is the approximate factorization method in
which the local linearization matrix is approximately factored to within the order of

time differencing accuracy in such a way that the inversion work per step is greatly re-
duced. Two such schemes for Eq.(3) are illustrated below.

Equations (2) or (3) have been solved using a Beam-Warming noniterative approximate
factorization implicit scheme of the form, c.f. [1331, [1491-154],

[I + h6j.4 - 1 I]~ + Nl,fi" - 1 1 + Ii\C " - 1'R&
1

'' J - DK]d AQ-
- A = E - E)+,("- -K0 ~ - R °~S -

where h = 6t or (.lt)/2 and the free stream base solution is indicated. Here _ is
typically a three point second order accurate central difference operator, while 8 is a
midpoint operator used with the viscous terms. The matrices 1, i, C, and k result from
local linearization about the previous time level and J is the Jacobian of the
coordinate transformation. The factored left hand side operators form block tridiagonal
matrices. Because central space difference operators are used, numerical dissipation
terms denoted as Di and D have been inserted into Eq.4 In their simplest form these
have been given as combinations of second and fourth differences, c.f.[151].

As an alternative to using central space differencing for the convection terms, upwind
(i.e. backward and forward) space differencing can be used (c.f. 1134], [137], (152]-
(126]) if the fluxes are properly split according to their characteristic properties.
Upwind schemes can have several advantages over centzal difference schemes, including
natural numerical dissipation, better explicit stability, and more readily inverted
implicit schemes. Conversely, upwind schemes for systems of equations have generally
been more complicated and computationally expensive than central difference schemes and
are not very suitable for treating viscous terms.

A mixed upwind-central difference scheme can be very effective if the upwind differen-
cing is used in the streamline direction. An implicit algorithm for the thin layer
Navier-Stokes equations using flux-splitting and upwind differencing in one direction is
given by 1156]

1 + ,? (A+ " + 1,," - ,R -' ,,-T."J - D,J

X [+ + {A) + " - D,1,] .IQ- =

[- E, + -

+6G"- C.) - R, (S" - j} - D,(Q" -()

Here 8b and 8b are backward and forward three-point difference operators and De
contains only i and 4 numerical dissipation operators. This two-factor implicit scheme
is readily vectorized or multi-tasked in planes of = constant. A semi-implicit scheme
is obtained by neglecting the calculation of h Sr- in the implicit backsweep operating
on %Qn. e

Body surface boundary conditions have often been supplied to the above algorithms by
using a combination of normal-momentum, tangency or no slip, and extrapolation [133].
Various farfield conditions have been used including characteristic-like conditions.
Because of their simplicity, in most of the application codes the boundary conditions
have been imposed explicitly, or a combination of simplified implicit-explicit
conditions have been used. However, fully implicit boundary conditions have also been
used ans an elegant implicit characteristic-like formulation has been described by
Chakravarthy [157].

6.4.3 Vectorization and Multi-Tasking

The structure of the above algorithms lends itself to vectorized computer coding. All of
the operations to the right hand side of the equal sign simply require that difference
operations be carried out using known data on a well-ordered grid. Like an explicit
algorithm, these operations are very simple to vectorize. To the left hand side of the
equal sign, implicit operations must be carried out, however, because of the approximate
factorization, only solution of uncoupled sets of block tridiagonals (with 5 x 5 blocks)
have to be carried out. Writing equation (4) in an algorithm form helps to clarify

A--A.

156

[I + I 6(' - DJ]2s~ RHS

+ i +,~ h6,,13 - A.]

+ ,,,+ - RJ'.f"J - D] A" = "

Interpretation of this algorithm shows that in the first line, the RHS must be formed
over the field. The values can be temporarily stored in the array that will hold Ai.
The left hand side operator of the first line forms a block tridiagonal matrix (with 5 x
5 blocks) in f for each 17- grid line intersection. For example, if indices J,k,l
correspond to 4 , 77, 4 the first factor of the equation forms a block tridiagonal
between, say, points j = 1 to j = jmax. There is one such e-block tridiagonal for each
k,l index. Efficient solution routines for block tridiagonal matrices are inverted
simultaneously so as to avoid the recursive nature of matrix elimination procedures.
Because there is a f-block tridiagonal for each k,l index, vectorization can be
achieved by simultaneously inverting a-block tridiagonals over, say, k = l,kmax. In
this way a vector length of kmax is achieved, see Fig. 6. 2

VECTOR DIRECTION

RECURSIVE
,DIRECTION

I-1 B C BC a c B C
11 11 12 2 13 13 1 , 1K

1- 2 A a C AB8 C A C C A 8 C
212121 222222 23 23 3 2K 2K 2K

,-3 A 1 A B A B AB
31 31 32 32 33 33 3K 3K

I K -1 K - 2 K-3 K -K-

Figure 6.2: Simultaneous inversion of block tridiagonals to obtain a vector length.

However, in inverting a C-block tridiagonal, temporary storage is needed for the
backward elimination; and this storage requirement is increased by kmax. (Means of
reducing the block size are discussed in (1581 and (159) as a way to improve efficiency,
and these same techniques reduce temporary storage as well). Overall, vectorization
tends to complicate the coding, but not unduly so. On the CRAY-XMP, vectorized codes for
the above equation runs about 5 times faster than the unvectorized code for a typical
application, see [151]. Additional details on the vectorization of this scheme are given
in section 6.6 and in [160].

The same vectorization approach works for the mixed upwind scheme given by equation 5.
For the first factor, efficient inversion requires recursive operations in both the
and t directions. This is because the f-operator is a backward differencing and forms
a lower triangular matrix which is readily solved by sweeping through the grid from j =
1 to jmax while the C-operator forms a block tridiagonal as well. However, .operators
do not appear in the first factor, so vectorization is achieved at a given f-plane by
simultaneously inverting in n the block tridiagonals formed in t. The second factor is
treated in the same way. Now a backsweep through the grid is required and block tridia-
gonals formed in Ti are inverted simultaneously in C

The above implicit algorithms can also be coded for multi-tasking by assigning each
processor a portion of the code. Each processor need only be assigned some segment of
the uncoupled block tridiagonals. However, because of the extra recursiveness in the
mixed upwind-central scheme, only one direction can be partitioned without creating
explicitly lagged boundaries. In this case the vector length that each processor deals
with becomes smaller as more processors are used.

Improvements to the basic algorithm in both efficiency and accuracy have been made by a
variety of contributors. To improve its overall efficiency, simple changes have been
optionally implemented. They include the use of space varying At, use of a sequence of
coarsened grids to provide a good initial guess, cutting inversion costs by using either
diagonalization (158] or block reduction (159] methods, implementation of better
numerical dissipation terms, and more implicit treatment of the numerical dissipation
terms. As described in [151], these combined changes can improve steady state efficiency
by an order of magnitude.

Although the implicit algorithm has been presented with three point central differen-
cing, versions of the algorithm that have fourth ordir accuracy in space have been
available [133] and are preferred unless strong shock waves are present. Reddy (131] has
also demonstrated a version in which a pseudo-spectral operator is used in place of the
right hand side convection operators. Total variation diminishing TVD) implementations
[132] and [133] have also been carried Out to better capture shocks, and perturbation
about approximate hase solutions has been used to reduce the number of needed grid
points{[134] and [135]}.

6.4.4 Composite Mesh Schemes

The previous algorithms have been described for use on a single body conforming curvi-
linear grid. This means that a structured body conforming, smoothly varying, and proper-
ly clustered grid must be generated. Or restated another way, the generated grid must
not be discontinuous, too skewed, and it should not waste points in regions of the field
in which little change takes place. For simple configurations such a grid is relatively
easy to generate. However, it has not been feasible to generate a single body conforming
grid that is practical in the way described above for a complex three dimensional
configuration such as an airplane. Using a single grid, grid lines simply become too
skewed or too poorly clustered.

One way to extend the algorithms to complex configurations is by using composite grids.
Composite grids use more than one grid to mesh an overall configuration with each
individual grid of the system patched together or overset. The sketches shown in Fig.
6. 3 illustrate several simple patched and overset grid configurations in two
dimensions for a typical two body problem. As the sketches illustrate, patched grids
are individual meshes that are joined together at some common interface surface. With
overset grids the meshes are simply superimp-sed or partially superimposed to cover the
region of interest, and are not joined together in any special way, although they can
be.

(b)

(a|
(c)

Figure 6.3: Sketches showing basic grid treatments for a simple body : a. rectangular or
Cartesian; b. body conforming curvilinear; c. body conforming irregular triangularized.

-- A

The use of a set of patched or overset giids to form a larger composite grid carries the
discretization process one step further. In a sense a composite mesh scheme assumes some
of the characteristics of an unstructured grid in which the overall grid is made up of a
few well-ordered grids that are tied to each other in an unstructured way. Because each
individual grid in the system is well-ordered, each is suitable for efficient finite
difference solution using vectorized computers and any available single grid code. The
problem with a composite grid scheme is the difficulty of accounting for all the possi-
ble communications between meshes and the difficulty of supplying interface boundary
data without degrading numerical accuracy or convergence.

Limited experience with both patched and overset grids (e.g., 1136], (139], [141]) has
not shown which method is preferable. An optimum method will likely combine both patched
and overset grids and perhaps small grid segments that are not well ordered, and such
grids have already been tried (166]. Both patched and overset grid schemes necessitate
extensive bookkeeping procedures. One of the drawbacks of the patched grid method is a
grid generation problem that is still relatively difficult because various interfaces
have to be defined and grids with both inner and outer boundary surfaces must be
generated. Drawbacks to overset grids include interpolation of data points along an
irregular boundary and bookkeeping which can be especially complex if more than two
levels of overset grids intersect each other.

With composite grids the possibility exists of using different computers to update the
results on each grid if a multitasking computer processor is available, but this is
feasible only if the amount of work on each grid or subdivided grid is roughly the same.
Likewise, on machines which have a small but high speed memory and a large but low speed
peripheral memory it is feasible to keep only the memory requirements for a given grid
internal to the small fast memory. of course, one can partition a single grid scheme for
multitasking and memory can be rolled back and forth, but with composite grid schemes
this data management is naturally built into the code.

6.5 VECTORIZATION OF MACCORMACK S METHODS

MacCormacks purely explicit-corrector versions [771 of the two-level scheme of Lax and
Wendroff are easily applied, and can, in general, be completely vectorized [25,112], but
they have to satisfy severe stability conditions with respect to the marching step size.
For the explicit method to be stable in time-dependent calculations, the time-wise step
must be chosen proportional to the square of the corresponding spatial step size divided
by the kinematic viscosity. In the case of inviscid flow described by the Euler equa-
tions, the time step size has to be proportional only to the spatial step size itself
divided by the appropriate velocity, this being the Courant-Friedrichs-Lewy condition.

In the mid-seventies, the development of fully implicit schemes was favored for
integrating the time-dependent, governing equations for aerodynamic flows, because,
according to the stability analysis of linear model equations, such methods are not
restricted to small time steps. In practice restrictions do occur due to the method of
implementing the boundary conditions, due to the non-linearity of the equations, or, of
course, just due to the necessity of resolving physical features of the flow in
question.

MacCormack's explicit-implicit scheme [61,79] is based on the original, explicit method
[77]. A predictor-corrector, implicit operator is incorporated into the scheme to pro-
vide the capability of taking larger steps than are allowed by the explicit stability
condition. It is sufficient to consider essentially only the Euler terms of the gover-
ning equations in deriving the implicit operator using some corrections for the neglec-
ted viscour terms. Thereby the computational effort is reduced considerably compared
with time-accurate implicit schemes. The computational effort is further reduced by the
fact that the implicit sequences are only applied where it is really necessary, and are
otherwise skipped completely.

Both, explicit and implicit, predictor and corrector sweeps, are performed each in a
separate subroutine: EXPL-n and IMPL-n for each direction Xn, n = 1,2,3. Each of the six
subroutines consists essentially of three nested DO-loops, namely for the Xl-, X2- and
X3-direction, with the n-loop as innermost loop. Within this inner loop the flux across
one surface of cell n is determined for each value of n. In the explicit routines the
loop has always the range from n = 1 to n = (rnmax - 1), and uses the surface normals at
X(n+l) = constant; the appropriate predictor or corrector fluxes are obtained by either
leaving as is, or adding an increment of one to n (as appropriate) to fetch the
corresponding dependent variables. Note that for each value of n an IF-statement is
necessary to determine whether or not the implicit procedure must be followed. The
fluxes can be considered as local flux boundary condition and are determined at the end
of the nth step. (See flow chart).

A9.id,

Figure 6.4: Flow chart of the explicit-implicit Maccormack code.

START

no ontinuation
run

yes

Geometry data Read Initial
Initialization data, geometry

IT ITSTART

Determination of
sweep direction

CALL LXYZ
Predictor and corrector sweeps

CALL EXPi - ij.k
IT . Blending of explicit and

implicit domains
CALL IMPL - i%,k

Solution

Convergence
Surface values
CFL - numbers

.0o Convergence
T TEND

yes

STOP

The current efforts to completely vectorize the explicit portions of the explicit-
implicit scheme use the auto-vectorization feature of the CRAY compiler. Hence it was
necessary to decompose long DO-loops into smaller vectorizable loops, to remove IF- and
CALL-statements from DO-loops, to unroll short inner DO-loops to enable larger vector
loops, and to use the direction with the largest number of points as innermost DO-loop
variable. The introduction of dummy arrays is necessary to store intermediate scalars
into vector strings which allows exploiting the vectorizing capabilities of the CRAY-lS.
On the other hand, small, locally used arrays, are redefined into longer vector strings
(for more details see [401).

Using this strategy, the recursive bi-diagonal implicit sweeps have also been almost
completely vectorized. The only exceptions are the three IF-statement loops necessary
to decide whether and where the scheme is implicit. While on serial computers, it is
quite reasonable to detect single locations. If multiple implicit spots occur in one
direction, strings of locations are formed by searching for the first and last "implicit
point" in each direction considered.

160

Table 6.4: Computation times in seconds for the vectorized Euler and laminar Navier-
Stokes solutions per mesh cell and iteration.

Mesh 31 x 20 x 31 (19220) 42 X 20 X 31 (26040)

RDP Method

Explicit Implicit Implicit

Less More

Navier-Stokes
Full 5.9 8.5 9.3 8.5 I0- s
CFL, 023 (0) 0.56 (5168) 0.24 (0)
CFL, 1.24(1207) 3.03(2139) 1.28 (1139)

CFL, 64 (8349) 390 (9543) 167 (11520)

Thin-layer 2.5 5.7 6 5.5 10-'s
CFL, 0.23 (0) 0.36 (5168) 024 (0)
CFL, 1.24 (1270) 3.03 (2139) 1.28 (1139)
CFL, 164 (8349) 390 (9543) 167 (11520)

Euler 21 4.9 5.1 5 10-'s
CFL, 0.22 (0) 0.40 (1366) 0.47 (3735)
CFL, 1.22(1903) 222 (1377) 254 (12898)
CFL 1.56 (3842) 2.85 (5418) 3.29 (7600)

(n ..): number of cells. including boundary cells.

CFL,: maimum (inviscid) CFL-number in direction x .
RDP: CPU-time/(cells x iterations).

Vector loops are introduced in one of those directions which do not coincide with the
recursive direction. For different meshes one has then to take care that a direction is
used which produces longest vector strings and the smallest number of DO-loops to be
initiated in order to reduce the start up time for the initialization of the vector
loop.

The increase in efficiency is expressed in terms of the rate of data processing RDP (RDP
CPU time/(total number of grid points or cells times total number of iterations),

[113]. For the original code calculating the three-dimensional flow field past an in-
clined blunt body [63] the ratio of computer times on the IBM 3081K and on the CRAY-IS
using scalar performance only, is roughly 7.8, which increases to about 10 when auto-
vectorization is permitted. In comparison with the hand-vectorized version, a ratio of
about 31.4 is achieved for the computation of laminar flow. Note that this ratio is for
a semi-implicit version for the 31 x 20 x 31 mesh, where in the axial (31) direction the
integration was completely explicit, and in the circumferential (20) direction the
scheme was only semi-implicit.

The tatie indicates that the increase of computational work due to the viscous effects
of t'e thin-layer approximation is less than 20% of the work for the Euler equations.
Note that the first step sizes awa from the body in terms of radii are fairly small,
namely 0.00005 for the viscous (laminar) and 0.005 for the inviscid case. The table
shows to what extent the time requirements increase if the full Navier-Stokes solution
is used instead of the thin-layer approximation. The increase is largest for the expli-
cit calculations while the effect is less dramatic in the case of implicit integration.
Note that the time requirements (per cell and time step) for the implicit solution
remain nearly the same if the grid size is increased by roughly 30% [63).

6.6 VECTORIZATION OF THE IMPLICIT BEAM AND WAPMING SCHEME

The implicit factored finite-difference scheme of Beam and Warming [9) is employed to
solve the axisymmetric thin-layer Navier-Stokes equations. Approximating the time deri-
vative by the first-order Euler implicit or the second-order three-point backward for-
mula, linearizing the flux vectors by Taylor-series expansions, and using second-order,
central differences to evaluate the metric terms and the spatial derivatives of the flow
variables at interior grid points, leads to a finite-difference equation, which is
approximately factored and implemented by a sequence of two one-dimensional matrix
inversions referred to as the f-sweep and the n-sweep (cf. [9,97]).

All parts of this finite-difference method are easily vectorizable (section 6.4 and
1401) except the solution of the resulting block-tridiagonal linear systems. Applying
the Richtmyer algorithm simultaneously instead of separately, also vectorizes the block-
tridiagonal system solver, but at the cost of increased storage requirements. The com-
puted examrle of axisymmetric laminar supersonic flcw over a hemisphere-cylinder [85]

F ,a L,. .. .A -. .

fI ,

demonstrates the advantages of vectorization. As high Reynolds number flows are to be
examined, the thin-layer approximation of the Navier-Stokes equations is employed. The
original version was written in FORTRAN IV and implemented on the IBM 3081K. From the
flowtrace, the most time consuming subroutines were selected and modified following the
general guidelines for vectorization on the CRAY-IS.

Figure 6.5: Flow chart for the solution of the axisylmetric thin-layer Navier-Stokes
equations by the W am and Warming scheme.

START

INPUT

GRID GENERATION

INITIALISATION

n=1

GRID MOVEMENT

?-SWEEP
nzr .1

I-SWEEP

BOUNDARY TREATMENT

NO
CONVERGENCE

YES
OUTPUT

STOP

In the subroutines solving each block-tridiagz-al linea" system by the Richtmyer algo-
rithm, the inversion of the diagonal matrices was originally performed in two subrou-
tines decomposing and solving the corresponding linear systems, respectively. Pulling
these subroutines, which were called nearly 2.7 million times in the example, in the
calling routine, decreased the computing time for that subroutine by a factor of 17.36.

The computation of the block-tridiagonal matrices was not vectorized by the compiler
because of the number and complexity of the 48 elements to be calculated in a single DO-
loop. The remedy was to split the loop into three, and to calculate common tempcrary
arrays in another DO-loop, thereby reducing the CPU-time of the corresponding subrou-
tines by a factor of up to 2.89.

Unrolling inner loops of vector lengths 2,3, and 4 may decrease the CPU-ttme
considerably. Unrolling small nested loops may even enhance chaining. Applying this
guideline to the subroutine solving a block-tridiagonal linear system by the Richtmyer
algorithm, resulted in a speed up factor of 12.59. As almost 80% of the total CPU-time
of the original version of the blunt body code was spent in that subroutine, its
modification reduced the overall computing time by factor of 3.8.

To ompute the sum of certain residual vectors of all grid points in the subroutine
checking the convergence, the CRAY-lS Fortran intrinsic function 5SUM was employed. The
use of SSUM and ISMAX, which determined the indices of the maximum residuals, led to a
speed-up factor of 3.32 for this subroutine.

Because of the dependences due to the recursions in the Richtmyer algorithm, the subrou-
tine solving a block-tridiagonal linear system reached a computing speed of only 14.45
MFLOPS on the CRAY-IS. The elimination of these dependences by modifyina the Richtmyer
algorithm, reduced the total CPU-time by a factor of 1.46 (see the following table

, ~~~~~ ~~a_ _•- ,,,~,, -
ll ' u jn m m ' ' - m i'l

162

Table 6.5: CRAY-IS CPU-times of blunt body code versions for 400 time levels on a 26x31
grid.

Richtmnyer version Simultaneous
Richtmyer version

(s) (s)

lp.: 0.01 0.01
Grid generation 0.02 0.02
Initialization 0.03 0.03
Grid movement 0.40 0.40
C-swep 11.88 7.59

RHS 3.73 3.56
Matrices 1.25 1.16
Richtnyer 6.83 2.82
Store 0.07 0.05

'-sweep 11.16 7.20
Matrices 4.20 411
Richtmyer 6.86 3.01
Store 0.10 0.08

Boundary treatment 0.29 0.29
Con ergenc 0.54 0.54
Output 1.91 1.91

Total 26.24 17.99

SOLUTION OF BLOCK-TRIDIAGONAL LINEAR SYSTEMS ON VECTOR COMPUTERS

(a) Richtmyer algorithm:

The solution of the block-tridiagonal linear system

(1) A x = f

is to be found, where

A 1 I 1 /, f1
A2 , 2 2 f2

83 A3 C3 0 3 f3

A AX Cf- f K-i

BK-I AK-I CK-i XK-1 fK-I

BK AK / K f K

with AkBk,Ck , k
=

. K, 4xI matrices and

X kf k , k = 1 .. K, e-component column vectors
(In the present case, .e is equal 4).

The Gauss elimination method reduces the block-tridiagonal matrix A to the product of a

lower matrix L and an upper matrix U, i.e.

A = LU

where

1W3

LI U1

B2 12 I U2

B3 L3 I U3

.. ,

BK- L K-i I _I

BK LK I

Solving the triangular linear systems Sy = f and Ux = y, the Richtmyer algorithm then
takes the form:

t A I U I L IIC ,I 'Y1 L 11'

Lk Ak - BkUk- 1 Uk =
t
k CkYk L k

(f k -
kyk-I

(2) k =2... K-I

LK = AK- BUK -i - YK K1
(fK -BKy K-I

XK =YK

Xk Yk- UkkiW k = K-I,..,1

The lxl matrix Uk, k = 1,...,K-I, and the 1-component column vectors Yk, k = 1,.. .K, are
computed by applying the conventional Gauss elimination method to solve the 1 linear
systems

Lk Uk = Ck for each k = 1,...,K-i

and the linear system

L1 Yl f1 and

Lk Yk f k- Bk Yk-I for each k
=

2,. K

As the LU decomposition of each Lk , k = 1,...,K, and the solution of the corresponding
linear systems contain recursions, and as

Uk = (Ak-Bk Uk-I)- C k
=

2-. K-I, and

Yk L k'1 (fk - Bk Yk-1 k = 2,...,K

Xk = Yk-Uk 'k1 I ' k K-I.

are defined recursively, the resulting dependences preclude the vectorization of the
Richtmyer algorithm.

(b) Simultaneous Richtmyer Algorithm:

Among various possibilities, the simultaneous treatment of the Thomas algorithm, i.e.
the Richtmyer algorithm for "1" equal 1, was found in general to be the most efficient
algorithm for the solution of tridiagonal linear systems on the CRAY-lS and the CYBER
205 ([37],[49] in chapter 5.10, cf. chapters 5.4 and 6.3). Carrying this result over to
block-tridiagonal linear systems where "l" is greater than one, only the simultaneous
treatment of the Richtmyer algorithm will be considered here (84].

iL M

164

Since in the f-sweep of the Beam and Warming scheme, the block-tridiagonal linear
systems for determining 8q*

n
on lines of constant q are independent of each other,

the dependencies stated above can be removed, if the Richtmyer algorithm is applied to
these systems simultaneously by sweeping along the lines of constant f . Analogously,
the block-tridiagonal linear systems of the 'I-sweep may be solved simultaneously by
sweeping along the lines of constant 7.

For the solution of M block-tridiagonal linear systems

Am Xm fm , m = . M,

which are mutually independent, the simultaneous Richtmyer algorithm may be expressed as
follows:

k = 1

L kr, A jM

k,m k,m ,m=.
U 2,. C. , m .Lk,- k

U),, L-1 C '

Yk,m k,r'km S

k ,2 .KK-i

,,A K Jk

Lkm A A - ,cE k , U kI, .n

y : L kl k'._ kj9m = I n

k,-i k, , ' 5 "

Yk,m L m -,' .' rn, '

k z K-
L - ... , E U, 1 1

X,m = Ykj m Uk,nXk-I,m nl 1'... ,M

Each of the componentwise scalar operations in (2) becomes a vector operation with a
vector length of M in (3). Compared with the Richtmyer algorithm applied to M block-
tridiagonal linear systems separately, the operation count is the same for the simulta-
neous Richtmyer algorithm. Considering the storage requirements,

3*K*I*I floating point words for Ak, Bk, Ck, k = 1,...K,K*I floating point words for fk , k = 1,...K,
(a * c)+n floating point words for the solution of the linear

systems to determine Uk and Yk,

i.e. 52xK+20 floating point words in all for "" equal 4, are needed for the Richtmyer
algorithm. For the simultaneous Richtmyer algorithm the amount of storage required is
increased by a factor of M.

Thus by the choice of the Richtmyer algorithm, the minimum number of arithmetic opera-
tions, and, by virtue of its simultaneous treatment, the maximum vector performance, are
obtained at the cost of increased storage requirements. This may preclude the applica-
tion of the simultaneous Richtmyer algorithm, where there is insufficient memory.

16S

ADVANTAGES OF VSCTORIZATION

Two versions of the blunt body code [85] for the solution of the axisysenetric thin-layer
Navier-Stokes equations by the Beam and Warming scheme are compared in the fol lowi ng
table. In the Richtmyer version, all of the most time consuming subroutines, except the
one solving block-tridiagonal linear systems by the Richtmyer algorithm, are vectorized.
Moreover the idea of simultaneously applying the Richtmyer algorithm is used in the
simultaneous Richtmyer version.

Figure 6.6: Flow charts for the -and 17 -sweeps of the Richtszyer and of the
simuzltaneous Richtmyer versions (RHS =right hand side).

RICHT.YER VERSION SIMULTANEOUS RiCIITMYER VERSION

I-SWEEP 1- 2 a-SWEEP

orooct. RHS --Vor of(. IS a I 'c-t.l OHS Iotc If ISo!of
i zI2 .. M I m I.XL irrioror grid points

cofr~te block mot-ries of 18.0 at comnput, block Matrices of (8.01 at

11! -2 ~. [.MAX I1 lin teor gid points

ol. iro syte 2., 1 o MAX Ilo*. 2,reo syt r IS M) A fX-

2 . [.MAX-f

Str 00~l ont1_. con on ,n"

I f-SWEEP i .2 71-SWEEPA

comTporo block Mroiesof (18.81 l at -P~rI0. block. moiricos of 181 b)fa
iJ) (2. JMAX -1 ~ temor gr d pool

aolgniineo, Sytem 18.b) for SXI- line ry rrS 1- tObl f

computing time for input, grid generation, and initialization is almost negligible. It
is interesting to realize that the grid movement, i.e. updating the positions and the
metr ic terms of the grid points, takes only little more time than the boundary treat-
ment, and even less than the rather costly check of convergence. No further attempt was
made to speed-up the extensive output, as only a small overall improvement could be
expected.

166

Table 6. 6 : CRAY-iS CPU-times of Richtsyer and simultaneous Richtuyer versions of the
blunt body code for 400 time levels on a 26x31 grid.

N SIMULTANEOUS
RICHTMYER VERSION RICHTMYER VERSION

(sec) I (ec)

INPUT 0.01 0.01

GRID GENERATION 0.02 0.02

INITIALIZATION 0.03 0.03

GRID MOVEMENT 0.40 0.40

-SWEEP 11.88 7.59

RHS 3.73 3.56

MATRICES 1.25 1.16

RICHTMYER 6.83 2.82

STORE 0.07 0.05

n-SWEEP 11.16 7.20

MATRICES 4.20 4.11

RICHTMYER 6.86 3.01

STORE 0.10 0.00

BOUNDARY TREATMENT 0.29 0.29

CONVERGENCE 0.4 0.b4

OUTPUT 1.91 1.91

TOTAL 26.24 17.99

The differences between the Richtmyer and the simultaneous Richtmyer versions are re-
flected by the execution times of the 6 - and 'I -sweeps. For the calculation of
the block-tridiagonal matrices and the right hand sides, the simultaneous Richtmyer
version takes a factor of 1.04 less time than the Richtmyer version, as the number of
CALL statements is reduced and the implicit treatment of the symmetry and outflow
boundary conditions becomes vectorizable. But the main reason for the reduction of the
total CPU-time by a factor of 1.46 is due to the vectorization of the block-tridiagonal
system solver. Compared with the conventional Richtmyer algorithm, the simultaneous
Richtmyer algorithm attains speed-up factors of 2.42 and 2.28 for the solution of the
linear systems of the V -sweep and the C -sweep, respectively. The corresponding
computing speeds of 35 and 33 MFLCPS on the CRAY-IS for vector lengths of 29 and 24,
resp., can still be increased for longer vectors.

Table 6. 7: CPU-times in seconds per time level and per grid point for the blunt body
code [85].

nRchtmycr Versi cn

;; 3081K 101.5 IC 5 12 1 .

CRAY-IS 8.1 10-5 51 C

Considering the implementation of the blunt body code on the CYBER 205, the advantages
of the simultaneous Richtmyer version will carry over. Compared with the CRAY-IS, a
higher performance for forming the block-tridiagonal linear systems can be expected,
because long, contiguously stored vectors can be used to take advantage of the higher
peak MFLOPS rate of the CYBER 205. But for the simultaneous solution of the systems (cf.
chapter 6.3 for the simultaneous treatment of the Thomas-algorithm) and also for the
calculation of the systems in the Richtmyer version of the program, not all of the
vectors are contiguously stored, and the vector lengths are small. Therefore the high
vector performance of the CYBER 205 can only be exploited to a small degree by the
implicit Beam and Warming scheme.

AL_. SAK - -~ __ ------ - - - -

167

Since longer vectors can be formed and arrays instead of vectors can be used, resp., the
Beam and Warming scheme is expected to be more efficient on a vector computer like the
ETA-10 and a parallel processor like the former Illiac IV [94], resp., for three-
dimensional time-dependent problems than for two-dimensional ones, provided there is
sufficient memory.

To estimate the gain of performance for the CRAY-Is, the Richtmyer and the simultaneous
Richtmyer versions of the blunt body code were run on the IBM 3081K using the AUTODBL
compiler option and with the CRAY-l FORTRAN intrinsic functions ISMAX and SSUM replaced
by standard FORTRAN statements. The vectorization of the original version of the program
proved to be profitable on the IBM 3081K as well. The Richtmyer version led to a re-
duction of CPU-time by a factor of 1.37. Because of increased paging, the simultaneous
Richtmyer version reached a factor of only 1.15.

Comparing the Richtmyer version on the IBM 3081K with the simultaneous Richtmyer version
on the CRAY-lS, the CPU-time per grid point and per time level was reduced from 101.5 x
10E-5 sec to 5.6 x 10E-5 sec, corresponding to a speed-up factor of 18.19.

As the Richtmyer algorithm cannot fully exploit the high vector performance of the CRAY-
IS, there is still need for a vectorizable block-tridiagonal system solver with little
storage requirements, if the available storage prohibits the application of the simulta-
neous Richtmyer algorithm.

Table 6.8 : Speed-up factors of the Richtmyer Version (RV) and the Simultaneous Richt-
myer Version (SRV) of the blunt body code.

RV on ibf.i 3081K / SRV on IM 3081K / RV or ;BM 3081K /

RV on CRAY-IS SRV on CRAY-IS on CRAY-IS

12.47 21.66 18.19

6.7 A NOTE ON UNSTRUCTURED GRIDS

The application of mesh generation techniques to complicated geometries becomes increa-
singly difficult when one tackles three-dimensional problems. Considerable ingenuity is
required to form a network of cells that are not too distorted and yet meet all the
conditions previously mentioned. Successful mesh generation methods that use cube-like
cells have been developed for wing-body combinations and for a combination of wing,
body, and tail. However, it becomes increasingly difficult to keep boundary surfaces
aligned with cell faces when one uses a regular structure of rectilinear cells. This
difficulty has hindered the development of flowfield computational methods to treat a
complete aircraft including engine nacelles and struts.

An alternative to the mesh formed by an array of rectilinear cells is the use of
triangular elements in two dimensions or tetrahedra in three dimensions [4]. With this
cell type there is no longer any need to retain structure in the mesh. Indeed the lack
of any natural coordinate direction or need for structure becomes a virtue because it is
always possible to connect a set of points to form a covering of triangles in two
dimensions or tetrahedra in three dimensions. For the airplane code [531 a method has
been developed for calculating inviscid transonic flow over a complete aircraft based on
an unstructured mesh of tetrahedra.

The present version requires eight million words and takes about one hour to run on a
CRAY X-MP/48 Computer. Approximately one-third of this time is consumed by the trian-
gulation procedure that automatically connects the points to form the tetrahedra. The
remaining time is taken up by the solution algorithm that calculates the flowfield. The
present mesh contains 20,000 points and is made up of 100,000 tetrahedra. This is not
sufficient for an accurate solution, and realistic calculations will require many more
points than are now used. Memory requirement for an acceptably accurate result will be
about 50 million words.

The method, which is based on an unstructured mesh of cells, differs from most fluid
dynamics codes currently in use or under development, and is more closely related to
finite elements methods used in structural analysis. It poses a variety of novel
problems, both in the triangulation process and in the design cf a suitable algorithm.
Methods based on a structured network of rectilinear cells usually lend themselves
readily to vectorization. For example, current wing and wing-body-tail cries can sustain
a rate of about 70 MFLOPS on a CRAY X-MP computer system. For the unstructuicI aircraft
code the MFLOP rate drops to about one-tenth of this speed unless steps are TYen to
achieve a vectorizable algorithm.

suppose that the cells are labeled by the parameter L = I,NCELL. In two dimensions each
cell is a triangle with three vertices. Each vertex has a position defined by its x and
y coordinates. Let the n-th point have coordinates x(n,l) and x(n.2). A typical part of

It'W

the flow algorithm might require a loop over the cells in which the coordinates of the
cell vertices are required in some further computation. Thus, we may suppose that we
have an array, say NDC(L,I) where L refers to the cell number and I 1,2,3, refers to
the three vertices. Thus, a typical loop might have the form

DO 100 L = 1,NCELL
N1 = NDC(L,1)
N2 = NDC(L,2)
N3 = NDC(L,3)
X1 = X(Nl,l)
Yl = X(NI,2)
X2 = X(N2,1)
Y2 = X(N2,2)
X3 = X(N3,1)
Y3 = X(N3,2)

100 CONTINUE

The positions of the triangle vertices are thus defined by the coordinate pairs (Xl,Yl,
X2,Y2), and (X3,Y3). However, the use of indirect addressing mandated by the

unstructured nature of the mesh means that each point will appear at least three times
because it will be referenced as a vertex of at least three different triangles. The
possibility of a vector dependency will inhibit vectorization. However, if one first
sorts the cells into groups so that no vertex is referenced more than once in each
group, one can override the compiler and force vectorization confident that vector
dependency will not occur. Hardware gather and scatter operaions then ensure that the
vectorized algorithm for an unstructured mesh will have a processing rate comparable to
that achieved by the traditional algorithms which do not require indirect addressing.
The loop now takes the form

DO 110 K = 1,KGRP
Li = LGRP(K)
L2 = LGRP(K+I)-l
DO 100 L = Ll,L2

100 CONTINUE
110 CONTINUE

The sorting of a triangulated region into disjoint groups of triangles such that no
vertex occurs more than once in each group is reminiscent of map coloring problems. One
might therefore expect that ingenious sorting methods would generate the smallest number
of possible groupings. A naive sorting algorithm is already in use and can achieve a
fivefold improvement over a straight scalar computation, resulting in a sustained
processing rate of 20 to 40 MFLOPS. The variation in processing rate is caused by the
variation in the number of cell groups, which depends on the mesh. One might expect
improvements in sorting algorithms to lead to improved MFLOP rates.

6.8 VECTORIZATION AND MULTITASKING OF A MULTI-GRID ALGORITHM

The adaptation of multi-grid methods to the computation of Euler and Navier-Stokes flows
has been one notable trend in CFD since the early 80's. At present, multi-grid
algorithms are being used to accelerate the convergence of steady flow simulations.
However, it appears that their utility may extend to the time-accurate computation of
unsteady flows. For the following discussions on vectorization and multitasking we
closely follow the description in the reports by Johnson et als. [54), [55].

The introduction of multi-grid methods preceded the arrival of modern concurrent
processors. Consequently, their design has typically been based on the sort of sequen-
tial, scalar reasoning appropriate for SISD machines. Restructuring multi-grid algo-
rithms is therefore necessary with respect to the special architectures.

There are now available a variety of explicit and implicit s quential multigrid algo-
rithms for the solution of systems of conservation laws of the form

Q = -(F + G
t x y

with the conservation vector Q. This equation may, for example, represent the Euler
equations, the full Navier-Stokes equations or the thin-layer Navier-Stokes equations,
depending on the choice of the vector Q, F and G.

The multi-grid algorithm consists of a fine-grid solution procedure and a coarse-grid
acceleration scheme. The fine-grid procedure solves the unsteady equations of motion and
may, if desired, do so in a time-accurate manner. A variety of implicit and explicit
methods may be used to construct the fine-grid procedure. Here, because of its simplici-
ty and ubiquity in computational aerodynamics, we choose to use the explicit, two-step
Lax-Wendroff scheme known as MacCormack's method [77). The fine grid is constructed such
that the number of points in each direction is expressible as n(2**p)+l for p and n
integers such that p Z 0 and n a 2, where p is the number of grid coarsenings and n is
the number of coarsest-grid intervals. A collection of successively coarser grids is
then created by a recursive process which deletes every other point in each coordinate
direction.

Information is transferred from the fine grid to each of the coarser grids. This trans-
fer may be accomplished either by a sequential cascading of information through succes-
sively coarser grids or by a simultaneous communication directly from the fine grid to
all of the coarser grids. In any case, a coarse-grid scheme is then used to rapidly
propagate the resolvable components of this fine-grid information throughout the com-
putational domain to accelerate convergence to the steady state while maintaining the
accuracy determined by the fine-grid discretization.

In the sequential grid updating aigoritnm, the solution is advanced over one multiple-
grid cycle as follows. First a fine-grid correction, dQl, is computed. Then dQl is
restricted to the next-coarser grid, where dQ2 is computed. The dQ2 correction is both
restricted to grid 3 and interpolated onto grid 1, where it provides an additional
update to the fine-grid solution. On grids 3 through N-1 the procedure is analogous to
that on grid 2. When dQn has been computed and interpolated onto grid I to provide the
Nth update to the fine-grid solution, the next multi-grid cycle is ready to begin.

Observe that when the components of the sequential grid updating algorithm (namely, the
fine- and coarse-grid schemes) are both explicit, it is particularly easy to vectorize.
However, the effectiveness of vectorizing the coarse-grid scheme is limited by the
progressively shorter vectors which may be constructed on the successively coarser
grids. Such an explicit sequential algorithm may also be run on an MIMD machine by
splitting each grid, in turn, across the total number of processors available. An impli-
cit sequential grid updating algorithm would probably vectorize less well and also
require additional redesign to run on a parallel processor.

The parallel coarse-grid algorithm removes the dependence of grids 3 through N upon
their immediate predecessors. In particular, dQl is now restricted to each of grids 2
through N. All of these coarse grids may then be updated simultaneously and inde-
pendently of each other.

This allows the mesh points on grids 2 through N to be assembled into one vector in
order to improve performance on an SIMD computer. Alternatively, the coarse grids could
each be updated simultaneously on separate processors of an MIMD machine. This would be
attractive, for example, if the coarse-grid scheme were implicit.

A further possibility is a fully parallel algorithm. Here dQl from the previous cycle is
restricted to each of the coarse grids. This makes all of the grids 1 through N indepen-
dent of each other and allows their simultaneous update.

VECTORIZATION

As both the fine-grid solution procedure and the coarse-grid acceleration schemes used
in [54,55] are explicit, the resultant multi-grid algorithms are readily vectorizable.
Such vectorization of the sequential algorithm has been performed for computation on a
CDC CYBER 205. First the code was rewritten to take full advantage of the automatic
vectorization which is performed by the CYBER 205 compiler. For the conservation vector
Q and the flux vectors F and G four quantities must be computed at every point in the
two-dimensional domain. These vectors are stored in three-dimensional arrays. The array
indices were arranged in decreasing length from left to right, and the DO loops
containing these indices were likewise ordered so that the innermost loop corresponds to
the longest dimension (i.e., the first index), the second innermost loop corresponds to
the next longest dimension (the second index), and so on. These modifications enable
access to contiguous locations in the vectols so that the loops automatically vectorize.
When nested DO loops result in access to every point in the two-dimensional domain,
including the boundaries, entire matrices are treated as single long vectors containing
the whole flowfield. With these changes, the code compiled with the automatic
vectorization option ran approximately 2 to 4 times faster than the code using only
scalar optimization [55].

Further vector speedup was obtained by implementing CYBER 205 explicit vector FORTRAN.
Bit vectors were created for use in WHERE blocks to control storage for vectorized
computations that involved only the interior points of the domain. Dynamic storage was
introduced so that temporary vectors could be used to reduce the operations count.
Vector intrinsic functions (such as Q8VGATHR, QBVCMPRS, etc.) were used to build
contiguous vectors from the array elements needed on the coarse grids.

170*

The parallel coarse-grid algorithm has been vectorized in a similar fashion, with the
additional feature of combining the points to be updated on grids 2 through N into one
long vector. This minimizes the algorithm on an SIMD computer.

MULTITASKING

When attempting to multitask an algorithm for execution on an MIMD machine, we are
concerned with multitasking overhead and algorithm granularity. By granularity we mean
the time required to execute a multitaskable segment of the algorithm on a single
processor. For a given multitasking overhead, the best speedup is obtained when
algorithm granularity is maximal. Large granularity is usually introduced by top-down
programming which exploits global parallelism in the algorithm. Bottom-up programming,
on the other hand, exploits algorithm parallelism at a low level by making many
partitionings, each on small code segments, such as DO loops containing independent
statements.

The sequential multigrid algorithm contains many opportunities for creating small granu-
larity parallelism but relatively few opportunities for the sort of large granularity
necessary to produce good multitasking speedup in the face f non-trivial multitasking
overhead. This observation, together with the desirability of non-sequential multigrid
schemes for reasons of algorithm flexibility, led to the construction of the parallel
multigrid algorithms described above. In these algorithms, grids which are independent
of one another may be updated simultaneously on separate processors. in fact, such a
simple strategy may result in a poor load balance across processors because of the
different amounts of work inherent in updating grids of different coarseness. However,
more refined strategies are possible. Grids may, for example, be grouped together into
tasks of approximately equal work, or they may be melted into tasks with other large-
grained multitaskable code segments in order to equilibrate processor loading.

The scalar sequential algorithm in [551 yields multi-grid speedups of 6.9, 2.9 and 8.2
for selected inviscid supercritical and turbulent viscous flows, respectively. Explicit
vectorization of this algorithm results in vectorization speedups in the vicinity of
3.0, 2.9 and 2.7 for the respective cases cited above.

The parallel coarse-grid algorithm maintains essentially the same convergence behavior
as the sequential algorithm. Consequently, the multi-grid speedups obtained with it are
virtually identical to those of the sequential algorithm. Vectorization of the paraileL
coarse-grid algorithm yields speedups of 3.2, 3.0 and 2.8 for the three test cases
considered in [55].

The theoretical maximum speedup on a p-processor MIMD machine is p. Varying overhead
requirements of the multiple grid algorithms will obviously result in distinct actual
multitasking speedups. Using a top-down multitasking approach, the parallel coarse-grid
alaorithm has been implemented on a four processor CRAY X-MP and on a Denelcor HEP I.
Initially, only the coarse grids were multitasked so that the performance of parallel
grids on a multiprocessor could be evaluated. Then the fine-grid computations were
partitioned and multitasked, and the resultant code was integrated with the paralelized
coarse grids. Load balancing of the entire scheme completed the study of performance
resulting from the top-down approach. Multitasking results are reported in [55].

6.9 VECTORIZATION OF A GALERKIN METHOD

For the numerical simulation of incompressible flows spectral methods were used for many
applications. This class of numerical methods has particular advantages in solving
instability and transition problems.

A special type of spectral -'hods is the Galerkin method. To illustrate this method and
discuss vectorization [58], we examine the instabilities of a convective flow which is
confined to a rectangular box heated from below. To simulate these instabilities, the
three-dimensional, time-dependent Boussinesq equations were employed. The main interest
of the numerical simulation is to calculate the time-dependent instabilities which occur
in such a flow. The results of these calculations using the Galerkin method were given
in [58). in order to solve the basic equations with the Galerkin method we must expand
the unknown functions (velocity v, temperature T) in sets of given basis functions. The
unknown coefficients of the basis functions were determined in such a way that the error
is minimized in the computational region. The criterion for minimizing the error
function gives the equations for the coefficients.

To solve these ordinary differential equations the time derivatives were replaced by a
finite-difference operator. As the equation can be very stiff, explicit methods tend to
numerical oscillations especially for large systems of equations. We therefore employ a
derivation of the trapezoidal rule, the so-called "One-leg method."

This method is implicit, of second-order accuracy and remains stable up to large time
steps. The Galerkin equations now were reduced to a system of non-linear algebraic
equations for the unknown coefficients of the new time level. These non-linear equations
were solved using a Newton method. The structure of the Jacobian matrix depends strongly
on the basis functions chosen, and the values of the Rayleigh number and Prandtl number.
As the matrix is full and the values of the diagonal are not dominant, an iterative

At--- AdM*- -h. - - A - - ~ - - - --

171

method is not efficient to solve the linear systems. We therefore use the Gaussian
elimination.

Figure 6. 7 Flow chart of the Galerkin code.

I
F input, basis function selection I

I compute int grols

complete

yes

I.t

read integrals

compute the Jocobion motrox

no Jacobiafl
complete

yes

Goussion elimination

t1te no

yes

output

STOP

The implementation of the Galerkin method is more complicated compared to corresponding
finite difference schemes. Thus we confine ourselves to a discussion of the principle
structure of the program. It can be divided into three main parts:

1. Calculation of the integrals.
2. Calculation of the Jacobian matrix.
3. Solving the linear system.

The number and the values of the integrals only depend on the basis functions. They
remain constant during the whole calculation. Therefore there are two possibilities for
the structure of the program.

The first version is to calculate the integrals at each time step simultaneously with
the calculation of the Jacobian matrix. Thereby reducing the storage requirement. Most
of the storage is needed then for the Jacobian matrix. The total storage requirement is
about 1.4*N**2, where N is the number of basis functions. To simulate the 3D time-
dependent convection flow 400 functions are necessary corresponding to a relatively
small storage of 225,000 words.

In the second version the integrals are calculated once and stored before the first time
step. As the intagrals are required at each time step, this saves a lot of computation

-~ - ~LAM-

172

time. According to the type of computer, the computation time decreases by factors of
about 2.5 to 7. In contrast to this advantage, the requirement of storage increases
enormously. The number of integrals depends on the number of basis functions and the
selection modes used. For 400 functions, about 7 to 8 million words have to be stored.
In the case the memory is not large enough, say one million words, the values of the
integrals have to be written on disk in blocks of about 270000 words. The data manage-
ment is very easy, because every integral is required only once per time step.

In [58] the second version of the Galerkin method has been realized. The principle parts
of the program are explained with the flow chart shown in Fig.6.13. After the input of
all parameters the integrals FINT were calculated in the same sequence as they were
required later. After reaching the limit of 270000 the array FINT will be stored on disk
and the next integrals can be calculated.

This operation will be repeated until all required integrals are calculated and stored
on disk. Setting n equal to 1 the first time step begins. To determine the Jacobian
matrix the values of the integrals are restored from disk to the array FINT again in
blocks of 270000 words. After the Jacobian has been completely calculated the linear
system is solved employing the Gaussian elimination, and the next time steps can be
calculated until the final time TEND is reached.

To vectorize the code efficiently, the compiler option ON = F has been employed giving
information about the time required by each subroutine during the execution of the
program. The result of this is summarized in Table 6.14.

Table 6. 9 : CRAY-iS CPU-time (in seconds) for the original version of the Galerkin code,
398 basis functions.

19put, Output, basic function selection 1.63 1__p1t Output,- 1

Integrals, calculation and store 12.18 start-u tmc

Jacoltan matrix 6.8 1
Subroutine OVEK 5.47

reud intecrals 1.3.

rest 0.16 pe-r tij:e ste
7

Gaussion eilim ati)n 3.

The input of parameters, the selection modes for the basis functions and all output
utilities together require 1.60 seconds assuming a number of 398 basis functions. Before
executing the first time step, one has to calculate all the integrals and to store them
on disk. This part of the program requires 12.18 seconds. The code to calculate the
Jacobian matrix is well structured and most of the time is spent in the subroutine
DOVEK which contains only some nested DO-loops. Including the time for reading the
integrals from disk, the total time required is 6.82 seconds. 3.10 seconds are needed
for solving the linear system by Gaussian elimination.

In the sections of the code containing the selection of the basis functions and the
calculation of the integrals, vectorization is very difficult. The selection modes for
the basis functions is held very variable and there is no chance to get a good perfor-
mance in these parts of the code. When being interested mainly in time-dependent cal-
culations with the need of 500 to 5000 time steps, the start-up time can be neglected
compared to the time required for all time steps. Therefore vectorization of the subrou-
tine DOVEK and the Gaussian elimination is most important.

As discussed above the integtals stored on disk have to be read in blocks of about
270000 words at each time step. In the example shown in Table 6.14 total number of
integrals is 7.3 * 10"-6. Using an implicit DO-loop in the READ-statement, which is
vectorized on the CRAY-IS, the CPU requires 1.30 seconds to read the whole data.
Replacing the implicit DO-loop by the BUFFER IN statement the time to read the data is
reduced by a factor of 65 in this case. The 0.02 seconds now required to transfer the
data can be neglected compared to the other operations per time step. Using this fast
data transfer, one is no longer restricted by the relatively small memory of the CRAY-
IS.

To solve the linear system defined by the Jacobian matrix a vectorized Gaussian elimina-
tion discussed in [40] has been employed leading to a reduction in the computational
time by a factor of up to 3.8. Considering the calculation with 398 basis functions the
elimination process now requires 0.81 seconds. Assuming 0.66*N**3 floating point opera-
tions to solve the N linear equations, a computing speed of 52 MFLOPS for N equal to 398
has been obtained (59].

As the Galerkin equations consist of sums of linear and quadratic terms only, the parts
of the derivatives resulting from a linear term lead to a single loop, which is already
vectorized. To calculate the parts resulting from the quadratic terms, two nested loops

are required. These loops contain more than 98.5 per cent of the operations needed to
build up the Jacobian matrix, and are integrated in the subroutine DOVEK. The whole task
now is to vectorize this one subroutine.

In the original version the subroutine DOVEK contained the following nested loops

DO I I = IA,IE
DO I J = JA,JE
NB = NB + I
PA(I) = PA(I) + X(J) x FINT(NB)

1 PA(J) = PA(J) + X(I) x FINT(NB)

The partial derivatives of one equation are stored in the array PA and the coefficients

in the array X. To improve the performance of these loops we do the following steps:

a) Remove the dependences:

Vectorization of the inner loop yields wrong results if I is equal to J. Therefore the
loop is not vectorized by the autovectorizer. To avoid the dependences the inner loop is
split into two loops. As the inner loops are now vectorized the performance improves by
a factor of about 3.4.

b) Increase length of inner loops:

As the basis functions of the velocity vector and the temperature are composed of 7
subsystems of different symmetry, the length of the inner loops varies from about 20 up
to 100 even if all 400 functions are used. Defining a new array Xl, we can copy two or
three parts of the vector X to the new array to store the relevant parts contiguously.
Processing the longer vector Xl, one can avoid especially the very short loops. Although
one has to copy the vectors each time before processing the nested loops a speed up
factor of 1.3 has been obtained.

c) Use the CRAY-IS intrinsic functions:

Considering the nested DO-loops in the above example one can recognize the different
vector structures of the two statements in the inner loop. As the index I of the outer
loop has a constant value for the inner loop, the linear expressions have the form

SCALAR = SCALAR + VECTOR * VECTOR
VECTOR = VECTOR + SCALAR * VECTOR

Therefore the expressions can be replaced by the intrinsic functions SDOT, which cal-
culates the dot-product of two vectors and the function SAXPY which adds a vector and
another scaled one. The improvement of performance Dy employing these functions is not
very high. Whereas the function SDOT has a speed-up factor -- greater than one for all
vector lengths, SAXPY is faster than the corresponding DO-loop only for a vector length
greater than about 100.

Although nearly all operations to calculate the Jacobian matrix are done using intrinsic
functions, and therefore more than 99 per cent of this part of the code is vectorized,
the performance is relatively poor. Employing the example with 398 basis functions, one
can obtain a rate of only 30 MFLOPS. The maximum perrormance of more than 60 MFLOPS is
attained only for a vector length of more than 300 for SAXPY and more than 1000 for
SDOT. Employing loops with lengths in the range of 50 to 150 the function does not work
very efficiently.

As there is no possibility to further increase the length of the vectors used within the
al-orithm, another change of the DO-loops is more efficient:

d) Unroll the outer loop partially:

First, one has to replace the intrinsic functions by the original inner DO-loops. To
increase the number of operations in the inner loop, we are processing simultaneously
the expressions for I, I+l, 1+2 and 1+3. Therefore the increment of the outer loop
can be changed from 1 to 4. If the expression in the inner loop is a triadic operation
of the form

VECTOR = VECTOR + SCALAR * VECTOR

this modification leads to rather high performance even for short vector lengths. To
illustrate the modification, we show the original nested loops in comparison to the
partially unrolled outer loop:

original

DO I I = IA,IE
DO 1 J = JA,JE
NB = NB+I

1 PA(J) = PA(J) + X(I) * FINT(NB)

Fil

F Taetr, NsN

nnn a1 ig Ifnp
pocessed than in th.e oritna ''c's',n Z o ~r T ,
'am array2s have '-a De iceased ans a OS-fr v-i

aLdia faore Th~cea r e w art "c cange a! a'-" pod.= rca"'-- 'r a -at

DC I IA, IN
DC J = ;ASJE
NB NB-

1 PA(IJ PA(It '- x(J'-FINrNB)

1i:adic oaerat in

NB6 NB

PA =PA T) F - N' N" -

ca- e anugh ain ts -xa"'pj 'tie .%ne loop ismwteshotcc -cpr~

aiyrphri acrcimanoe aatix 66 erFncP "nd-

a rather goad result an the CRAY- Is.

The benefit of aill modificatians described above olpo w h thea:
versIon, and the complarely neotortzed varsio or. ath-e _'AY- S. -'n-h- 'F-n0
cdifiad version is ron 4 __rtr.,S~ roe sot rcan %F

'h t ras oo tlo i-ato ilne tO=S .0.
in Tabtle6..

r398 basis fo;norloos and ooe '-sort

'co'' '

-W

As there are no modifications, the time required for input and output remains the same
in the two versions. The decrease in time for calculating and storing the integrals is
the profit of the BUFFER OUT statement, The time required for the calculations of the
Jacobian matrix is decreased considerably by vectorization of the code. Also the
Gaussian elimination used in the vectorized version has a speed-up factor of nearly four
compared to the original version. By turning the autovectorizer off, we can see that
only little is vectorized in the code computing the integrals and doing input and
output. However, factors of 6 to 8 can be obtained by computing the Jacobian and the
Gaussian elimination.

To get a feeling of the influence of the start-up time, we give a realistic example of
solving the time dependent equations using 500 time steps. The CPU time and the relative
importance of the sections are shown in Table 6.16.

Table 6.11: CPU-time on the CRAY-IS of the modified Galerkin code, 398 basis functions,
500 time steps (% per cent).

Ftme(s-c)S%]

nput, output 1.6 0.2

nintegrals 10.8 1.;

Jacobian matrix 309.6 '2.5

Ga~ssian eliminaticn dC6.S 5.3

One can easily see that the start-up time required by input/output and the calculation
of the integrals can be neglected, and only the highly vectorized parts of the code are
important.

6.10 LITERATURE

The references presented below give only a brief overview of the understanding
engineers and scientists have realized in the ficlds of computational fluid dynamics
with special emphasis on the Navier-Stokes equations, with the aid of supercomputers
during the last years. For more information the reader is referred to the more detailed
literature in the special references.

(1] Abolhassani J.S., Smith R.E. and Tiwari S.N.: Numerical Solutions of Navier-Stokes
Equations for a Butler Wing. AIAA Paper 87-0115, 1987.

[2] Adamczyk J.J., Graham R.W.: Numerical Simulation of Multiblade Row Turbomachinery
Flows. CRAY Channels 8, 1986 No.2, 12-17.

(3] Azar A., Gaglot Y.: Vectorization of explicit multi- dimensional finite difference
and finite element schemes. Proc. 1. Int. Coll. on Vector and Parallel Computing
in Scient. Appl., Bulletin de la Direction des Etudes et Recherches, Serie C, 1
1983, 23-29.

[4] Baker T., Jameson A.: Computational Methods and Aerodynamics. CRAY Channels 198

(5] Barkay D., Moriar-y K.J.M.: Can the Monte Carlo Method for Lattice Gauge Theory
Calculations be Effectively Vectorized? Comp. Phys. Comm. 27, 1982, 105-111.

[6] Barth T.J., Pulliam T.H., Buning P.G.: Navier-Stokes Computations for Exotic
Airfoils. AIAA-Paper 85-0109, 1985.

[7] Barton J.T., Pulliam T.H.: Airfoil Computation at High Angles of Attack, Inviscid

and Viscous Phenomena. AIAA- Paper 84-0t24, 1984,

(8] Barton J.T.: Early Experiences with the NAS CRAY-2. NASA Ames 1986.

[9] Beam R.M. and Warming R.F.: An implicit factored scheme f.r the compressible
Navier-Stokes equations, AIAA J. 16 1978 393-402.

[10] Berendser H.J.C., van Gunsteren W.F., Postma J.P.M.: Molecular dynalcs on CRAY,
CYBER and DAP. Proc. NATO Advanced Research Workshop on High-Speed Computation,
Juelich, 20-22 June, 1983.

(11] Berger M., Oliger J., Rodrigue G.: Predictor-corrector methods for the solution of
time-dependent parabolic problems on parallel processors. In: Elliptic Problem

iA

17,

(121 Book D.L.: Finite-difference techniques for vectorized fluid dynamics calcula-
tions. Springer-Verlag, New York 1981.

(131 Brandt A.: Multigrid solvers on parallel computers. In: Elliptic Problem Solvers
(Schultz, M., ed.), Acad. Press New York 1981, 39-84.

(141 Bristeau M.O.: GAMM workshop on "Numerical Simulation of Compressible Navier-Stokes
Flows", Dec. 4-6, 1985, Nice. To be published in "Notes on Numerical Fluid Mecha-
nics", Vieweg Verlag.

(151 Brocard 0., Bonnet C., Vigneron Y., Lejal T., Bousquet J.: A vectorized finite
element method for the computation of transonic tridimesional potential flows.
Proc. 1. Int. Coll. on Vector and Parallel Computing in Scient. Appl., Bulletin
de la Direction des Etudes et Recherches, Serie C, 1 1983, 45-50.

[161 Butcher W.: The solution of the seismic one way equation on parallel computers.
Proc. Int. Conf. "Parallel Computing 83", North-Holland Publ. 1984.

[17] Buzbee B., Golub G., Howell J.: Vectorization for the CRAY-i of some methods for
solving elliptic difference equations. In: High Speed Computer and Algorithm
Organization (Kuck, D.J. Lawrie, D. H., Sameh, A.H., eds.), Acad. Press, New York
1977, 255-272.

[18] Buzbee B. L.: Implementing techniques for elliptic problems on vector processors.
In: Elliptic Problem Solvers (Schultz, M., ed.), Acad. Press, New York 1981, 85-
98.

[191 Candler G.V., MacCormack R.W.: Hypersonic Flow Past 3-D Configurations. AIAA Paper
87-0480, 1987.

[201 Carr M. P., Forsey C.R.: Developments in Coordinate Systems for Flow Field Pro-
blems. In: Roe, P. L. (Ed.): Numer. Meth. in Aeronautical Fluid Dynamics. Acad.
Press 1982.

(211 Chaderjian N.M., Steger J.L.: A Zonal Approach for the Steady Transonic Simulation
of Inviscid Rotational Flow. AIAA-Paper 83-1927, 1983.

.221 Chaderjian N.M.: Transonic Navier-Stokes Wing Solutions Using a Zonal Approach.
AGARD 58th Panel Symp., Aix-en- Provence 1986.

[231 Chang J.L.C., Kowak D., Dao S.C., Rosen R.: A 3D Incompressible Flow Simulation
Method and its Application to the Space Shuttle Main Engine. AIAA-Paper 85-0175,
1985.

[241 Chapman D.R.: Computational Aerodynamics Development and Outlook. AIAA Journal 17
1979 No 12, pp. 1293-1313.

[25] Chima R.V., Johnson G.M.: Efficient solution of the Euler and Navier-Stokes equa-
tions with a vectorized multiple- grid algorithm. AIAA-Paper 83-1893 1983.

(261 Current Capabilities and Future Directions in CFD. Aeronautics and Space Eng.
Board, NRC 1986.

[271 Doughery F.C., Benek J.A., Steger J.L.: On Applications of Chimera Grid Schemes to
Store Separation. NASA TM 88193, 1985.

[281 Edwards J.W., Thomas J.L.: Computational Methods for Unsteady Transonic Flows. AIAA
Paper 87-0107, 1987.

(29i Ergel J., Lichnewsky A., Th-masset F.: Parallelism in finite element computation.
Proc. IBM Symp. on Vector Computers and Sc. Comp., Rome 1982.

[301 Evans D.J.: The parallel solution of partial differential equations. Proc .nt.
Conf."Parallel Computing 83", North-Holland Publ. 1984.

(311 Flores J.: Convergence Acce-eration for a Three- Dimensional EulerNavier-Stokes
Zonal Approach. AIAA Paper 8E-1495, 1985.

32: Flores ., Holst T.L., Kaynak U., Gundy K., Thomas S.D.: Transonic Navier-Stokes
W:ng Solution Using a Zonal Approach. Part 2. AGARD Conf. Froc. 412, 1985.

[331 Flores J., Holst T.L., Kaynak U., Gundy K., Thomas S.D.: Transonic Navier-Stokes
Wing Solution Using a Zonal Approach. Part 1. NASA TM 3248, 1986.

[341 Flores J., Reznick S.G., Holst T.L., Gundy K.: Transonic .avier-Stokes Solutions
fo- a Fighter-Like Configuration. AIAA-Paper 87-0032, 1987.

331 FuB1t K., Obayashi S.: Navler-Stokes Simulation of Ttansonlc Flow over Wing-F.se-
!age Combinations. AiAA Paper 86-1831, 1986.

AA_.0

[36] Gentzsch W.: High performance processing needs in fluid dynamics. Proc. SEAS
Spring Meeting, Amsterdam 1982, 575- 590.

[371 Gentzsch W.: Benchmark results on physical flow problems. Proc. Conf. High-Speed
Comput., Juelich 1983.

[381 Gentzsch W.: Numerical Algorithms in CFD on Vector Computers. Parallel Computing 1,
1984, 19-33.

[39] Gentzsch W. (Ed.): Finite Volume Methods for the Potential, Euler and Navier-
Stokes Equations. DFVLR-IB 221-84 A 10, 1984

[40] Gentzsch W.: Vectorization of Computer Programs with Applications to Computational
Fluid Dynamics. Vieweg Publ. Comp., Braunschweig F.R.G. 1984.

[41] Gentzsch W.: The Optimal Use of Vector Computers in Computational Physics. Proc.
of the SEAS Spring Conferecne 1985.

[42] Gentzsch W.: Benchmark Results for the IBM 3090-200 VF, UNISYS ISP, FUJITSU VP
200, CRAY X-MP and CRAY-2. PIC, Vol. 10, No 2, 1987 (in german).

[43] Gentzsch W.: Benchmark results for the CONVEX C-l, ALLIANT FX/8 and SCS-40. PIC,
Vol. 10, No 3, 1987 (in german).

[44] Gnoffo P.A., McCandless R.S., Yee H.C.: Enhancements to Program LAURA for Computa-
tion of Three-Dimensional Hypersonic Flow. AIAA Paper 87-0280, 1987.

[45] Gregg R.D., Misegades K.P.: Transonic Wing Optimization Using Evolution Theory.
AIAA 1987.

[46] Haase W., Echtle H.: Computational Results for Viscous Transonic Flows Around
Airfoils. AIAA Paper 87-422, 1987.

[47] Hankey W.L., Graham J.E., Shang J.S.: Navier-Stokes solution of a slender body of
revolution at large incidence. AIAA-Paper 81-0190 1981.

[48] Hemker, P.W., Wessling P., de Zeeuw, P.M.: A Portable Vector-Code for Autonomous
Multigrid Modules. In: POE Software (Eds. B. Engquist, T. Smedsaas) Elsevier Publ.
1984.

[49] Hodous M.F., Bozek D.G., Ciarelli D.M., Ciarelli K.J., Kline K.A., Katnik R.B.:
Vector processing applied to boundary element algorithms on the CDC CYBER 205.
Proc. 1. Int. Coll. on Vector and Parallel Computing in Scient. Appl., Bulletin
de la Direction des Etudes et Recherches, Serie C, 1 1983, 87-94.

[50] Holst T.L., Thomas S.D., Kaynak U., Gundy K.L., Flores J., Chaderjian N.M.: Com-
putational Aspect of Zonal Algorithms for Solving the Compressible Navier-Stokes
Equations in 3D. NASA TM 86774, 1985.

[51] Holst T.L.: AIAA "Viscous Transonic Airfoil" Workshop, AIAA 25th Aerospace Sciences
Meeting, Reno, Januray 1987.

[52] Jameson A., Schmidt W., Turkel E.: "Numerical Solutions of the Euler Equations by
Finite Volume Methods Using Rurge- Kutta Time-Stepping Schemes", AIAA 81-1259, June
1981.

[53] Jameson A., Baker T.J.: Improvements to the Aircraft Euler Method. AIAA-Paper 87-
0452, 1987.

[54] Johnson G.M., Swisshelm J.M.: Multiple-Grid Solution of the 3D Euler and Navier-
Stokes Equations. ICS Techn. Report 84001, 1984.

[55] Johnson G.M., Swisshelm J.M.: Concurrent-Processing Adaptations of a Multiple-Grid
Algorithm. ICS Techn. Report 86001, 1986.

[56] Keller J.D., Jameson A.: Preliminary study of the use of the STAR-100 computer for
transonic flow calculations. AIAA-Paper 78-12 1978.

[57] Kenichi Matsuno: A vector-oriented finite-difference scheme for calculating three-
dimensional compressible laminar and turbulent boundary layers on practical wing
configurations. AIAA Paper 81-1020 Proceedings of the AIAA CFO Conference, Palo
Alto, Cal., June 22-23, 1981.

[58] Kessler R.: Oszillatorische Konvektion, Dissertation, UniversitAt Karlsruhe 1983.

[59] Kessler R.: Vectorization of the Galerkin method. In [40].

[60] Kightley J.R.: The Conjugate Gradient Method Applied to Turbulent Flow Calcula-
tions. In: Proc. 6 GAMM-Conf. Numer. Methods in Fluid Mechanics (Eds: Rues D. and
Kordulle W.] Vieweg-Publ. 1986.

178
[61) Kordulla W., MacCormack R.W.: Transonic-flow computations using an explicit-

implicit method. Proc 8th Int. Conf. Num. Methods in Fluid Dynamics, Lecture Notes
in Physics 170, Springer, Berlin, 1982 420-426.

[62) Kordulla W.: On the Numerical Integration of Euler and Navier-Stokes Equations for

Compressible Flow-Some Basic Considerations. DFVLR-IB 221-84 A 13, 1984.

[63] Kordulla W.: MacCormack's methods and vectorization. In [40].

[64) Kordulla W., MacCormack R.W.: A New Predictor-Corrector Schema for the Simulation
of Three-Dimensional Compressible Flows with Separation. AIAA-Paper 85-1502,
1985.

[65] Kordulla W.: On the Efficient Use of Large Data Bases in the Numerical Solution of
the Navier-Stokes Equations on a CRAY computer. In: Notes on Numerical Fluid
Mechanics 12. Vieweg Verlag 1986.

[66) Kordulla W., Vollmers H., Dallmann U.: Simulation of Three-Dimensionai Transonic
Flow With Separation Past a Hemisphere-Cylinder Configuration. AGARD CP-412, Paper
31, 1986.

[67] Kordulla W.: Experiences with an Unfactored Implicit Predictor-Corrector Method.
Notes cn Numerical Fluid Mechanics, Vol. 13, Vieweg Verlag pp. 185-192, 1986.

(68) Kordulla W.: Using an Unfactored Implicit Predictor-Corrector Method. AIAA Paper
87-423, 1987.

[69] Kordulla W.: International Workshop on Numerical Simulation. Sept. 30 - Oct. 2,
1987, G6ttingen. Proceedings to be published in Notes on Numerical Fluid Mechanics.
Vieweg.

[70] Kordulla W.: Integration of the Navier-Stokes Equation in Finite-Volume Formula-
tion. Von Karman Inst. LS 1987-04.

[71] Kutler P.: A Perspective of Theoretical and Applied CFD. AIAA Paper 83-0037, 1983.

[72) Kuwak D., Chang J.L.C., Shanks S.P., Chakravarthy S.R.; A 3D incompressible Na-
vier-Stokes Flow Solver Using Primitive Variables, AIAA-Journal 3, 1986, 390-396.

[73) Large-Scale Computing in Aeronautics. AGARD Adv. Report No. 209, 1984.

[74] Li C.P.: Chemistry-Split Techniques for Viscous Reactive Blunt Body Flow Computa-
tions. AIAA Paper 87-0282, 1987.

[751 Lomax H.: Some prospects for the future of computational fluid dynamics. AIAA-
Paper 81-0994, 1981

[76] Ldhner R., Morgan K.: Unstructured Multigrid Methods: First Experiences, 1NME
Report Swansea 1985.

[77] MacCormack R.W.: The effect of viscosity in hypervelocity impact cratering. AIAA
Paper 69-354 1969.

[78) MacCormack R.W., Stevens K.G.: Fluid dynamics applications of the ILLIAC IV com-
puter. In: Computational Methods and Problems in aeronautical fluid dynamics
(Hewitt, ed.), Acad. Pv: ss, New York 1976, 448-465,

[79) MacCormack R.W.: A numerical method for solving the equations of compressible
viscous flow. AIAA-Paper 81-110 1981, see also AIAA J. 20 1982, 1275-1281.

[801 MacCormack R.W.: Current Status of Numerical Solutions of the Navier-Stokes Eaua-
tions. AIAA Paper 85-0032, 1985.

i81[Matsuno K.: A vector-oriented finite difference scheme for calculating 3-D com-
pressible laminar and turbulent boundary layers on practical wing configurations.
AIAA- Paper 81-1020 1981.

182] Meiburg E.: Vectorization of the Direct Monte-Carlo Simulation. In [40.

[83] Miyakawa J., Takanashi S., Fujii K., Amano K.: Searching the Horizon of Navler-
Stokes Simulation of Transonic Aircraft. AIAA Paper 8-0524, 198.

[843 Mueller B.: Vectorization of the Implicit Beam and Warming Scheme. In [401.

[851 Mue-ler B.: Calculation of axisymmetric laminar supersonic flow over blunt bodies,
DFVLR Report 1984.

(F6] Mueller B., Rizzi A.: Runge-Kutta Finite-Volume Simulation of Laminar Transonic
Flow Over a NACA 00i2 Airfoil Using the Navier-Stokes Equations. EFA TN 1986-67,
1987.

[87] Mueller-Wichards D., Gentzsch W.: Performance comparisons among several parallel
and vector computers on a set of fluid flow problems. DFVLR IB 262-82 R 01 Report,
1982.

[88] Nakahashi K., Obayashi S.: FDM-FFM Zonal Approach for Viscous Flow Computations
Over Multiple-Bodies. AIAA Paper 87-0606, 1987.

(89] Napolitano M., Walters R.W.: An Incremental Block-Line-Gaup-Seidel Method for the
Navier-Stokes Equations. AIAA Paper 85-0033, 1985.

[90] Newsome R.W., Kandil O.A.: Vortical Flow Aerodynamics-Physical Aspects and Numeri-
cal Simulation. AIAA 87-0205. 1987.

[91] Obayashi S., Fujii K., Takanashi S.: Toward the Navier-Stokes Analysis of Transport
Aircraft Configurations. AIAA 87-0428, 1987.

(921 Pan D., Pulliam T.H.: The Computation of Steady 3D Separated Flows Over Aerodyna-
mic Bodies at Incidence and Yaw. AIAA-Paper 86-0109, 1986.

(93] Pulliam T.H., Steger J.L.; On implicit finite-difference simulations of 3D flow,
AIAA-Paper 78-10 1978.

[94] Pulliam T.H., Lomax H.: Simulation of 3-D compressible viscous flow on the ILLIAC
IV computer. AIAA-Paper 79-0206 1979.

[95] Pulliam T.H., Steger J.L.: Recent Improvements in Efficiency, Accuracy, and Con-
vergence for Implicit AF Algorithms. AIAA-Paper 85-0360, 1985.

[96] Pulliam T.H., Jesperson D.C., Barth T.J.: Navier-Stokes Computations for Circula-
tion Controlled Airfoils. AIAA- Paper 85-1587, 1985.
C

[97] Pulliam T.H.: Efficient Solution Methods for the Navier- Stokes Equations. Von
Karman Inst. Brussels 1986.

[98] Rai M.M.: Navier-Stokes Simulations of Blade-Vortex Interaction Using High-Order
Accurate Upwind Scheme. AIAA Paper 87-0543, 1987.

(99] Redhed D.D., Chen A.W.: New approach to the 3-D transonic flow analysis using the
STAR-100 computer. AIAA-Journal 17 1979, 98-99.

[100] Reznick S.G., Flores J.: Strake-Generated Vortex Interactions for a Fighter-Like
Configuration. AIAA-Paper 87-0589, 1987.

[101] Rizzi A.: Vector coding the finite volume procedure for the CYBER 205. VKI-
Lecture Series 1983-04.

[102] Rogers S.E., Kwak D., Chang J.L.C.: Numerical Solution of the Incompressible
Navier-Stokes Equations in 3D Curvilinear Coordinates. NASA TM 86840, 1986.

(1031 Rogers S.E., Kwak D., Kaul U.K.: A Numerical Study of 3D Incompressible Flow
Around Multiple Posts. AIAA-Paper 86- 0353, 1986.

(104] Rogers S.E., Chang J.L.C., Park C.A., Kwak D.: A Diagonal Algorithm for the
Method of Pseudocompressibility. AIAA- Paper 86-1060, 1986.

(105] Rubbert P.E.: The Impact of Computational Methods on Aircraft Design. CRAY-
Channels 6, 1984 No.4, 2-5.

(106] Schmatz M.A.: Simulation of Viscous Flows by Zonal Solutions of Euler, Boundary-
Layer and Navier-Stokes Equations. Paper presented at the DGLR-Jahrestagung Okt.
1986, Munich.

(107] Schoenauer W., Gentzsch W. (Eds.): The Efficient Use of Vector Computers with
Emphasis on CFD. Vieweg Publ., F.R.G. 1986.

[108] Schr6der W., H~nel D.: An Unfactored Implicit Scheme witi Multigrid Acceleration
for the Solution of the Navier-Stokes Equations. To be pu)lished in Computers and
Fluids, 1987.

[1(19] Schwamborn D.: Vectorization of an Implicit Finite Difference Method for the
Solution of the Boundary Layer Equation. In (40].

(110] Schwamborn D., Reister H.: Entwicklung einer Navier-Stokes L6sung fur den DFVLR-F5
FlUgel. DFVLR-IB 221-86 A 08. 1986.

(111] Scott J.N.: Numerical Simulation of Time-Dependent Viscous Flows in Aerospace
Propulsion Systems. CRAY Channels 8, 1986 No.2, 6-11.

[112] Shang J.S., Buning P.G., Hankey W.L., Wirth M.C., Calahan D.A., Ames W.: Numeri-
cal solution of the 3-D Navier-Stokes equations on the CRAY-1 computer. Proc.
Scientific Comp. Inf. Exchange Meeting 1979, 159-166.

[1131 Shang J.S., Buning P.G., Hankey W.L., Wirth M.C.: Performance of a vectorized
three-dimensional Navier- Stokes code on the CRAY-1 computer. AIAA-Journal 18
1980, 1073-1078.

(1141 Shang J.S.: Numerical simulation of wing-fuselage interference. AIAA-Paper 81-
0048 1981.

(115) Smith R.E., Pitts J.I., Lambiotte J.J.: A vectorization of the Jameson-Caughey
transonic swept-wing computer program FLO-22 for the STAR-10 computer. NASA
Techn. Memorandum TM-78665 1978.

(1161 South J.C., Keller J.D., Hafez M.M.: Vector processor algorithms for transonic
flow calculations. AIAA-Journal 18 1980, 786-792.

(117] Spradley L.W., Stalnaker J.F., Ratliff A.W.; Hyperbolic/parabolic development for
the GIM-STAR code. NASA Contractor Report 3369 1980.

(118] Spradley L.W., Stalnaker J.F., Ratliff A.W.: Solution of the three-dimensional
Navier-Stokes equations on a vector processor. AIAA-Journal 19 1981, 1302-1308.

[1191 Swisshelm J.M., Johnson G.M.: Numerical Simulation of 3D Flowfields Using the
CYBER 205. ICS Techn. Report 85002, 1985.

(1201 Swisshelm J.M., Johnson G.M.: Parallel computation of Euler and Navier-Stokes
Flows. ICS Techn. Report 85003, 1985.

(121) Thomas J.L., Walters R.W.: Upwind Relaxation Algorithms for the Navier-Stokes
Equations. AIAA Paper 85-1501-CP 1985.

(1221 Thomas J.L., Taylor S.L., Anderson W.K.: Navier-Stokes Computations of Vortical
Flows Over Low Aspect Ratio Wings. AIAA Paper 87-0207, 1987.

(123] Thompson J.F.: A Survey of Grid Generation Techniques in CFD. AIAA-Paper 83-0447,
1983.

[124] Thompson J.F.: A Composite Grid Generation code for General 3-D Regions. AIAA
Paper 87-0275, 1987.

(1251 Vadyak J., Smith M.J., Schuster D.M, Weed R.: Simulation of External Flow fields
Using a 3-D Euler/Navier-Stokes Algorithm. AIAA Paper 87-0484, 1987.

[126) Vuong S.T., Coakley T.J.: Modeling of Turbulence for Hypersonic Flows With and
Without Separation. AIAA Paper 87-0286, 1987.

(127] Wu C-T., Ferziger J.H., Chapman D.R.: Simulation and Modeling of Homogeneous
Compressed Turbulence. NASA Techn. Report TF-21, 1985.

[128) Ying S.X., Steger J.L., Schiff L.B., Baganoff D.: Numerical Simulation of Unstea-
dy, Viscous, High Angle of Attack Flows Using a Partially Flux-Split Algorithm.
AIAA Paper 86-2179, 1986.

(129] Yoon S., Jameson A.: An LU-SSOR Scheme for the Euler and Navier-Stokes Equations.
AIAA Paper 87-0600, 1987.

[1301 Zabolitzky J.G.: Vector prograimning of Monte-Carlo and numerical problems. In:
Proc. of the 1982 Conf. on CYBER 200 in Bochum (Bernutat-Buchmann U., Ehrlich H.,
Schlosser K.-H., eds.), Bochumer Schriften zur Parallelen Datenverarbeitung
1982, 165-174.

Additional References (provided by Dr. J. Steger)

[131] MacComack, R. and Baldwin, B., "A Numerical Method for Solving the Navier-Stokes Equations With
Application to Shock-Boundary Layer Interactions," AIAA Paper 75-1 , 1975.

[132] MacComack, R ., "A Numerical Method for Solving the Equations of Compressible Viscous Flow," AIAA
Paper 81-110, 1981.

L133] Pulliam, T. H., and Steger, J. L., 'On Implicit Finite Difference Sinulations of Three-Oimensional
Flows," AIAA J. Vol. 18, 1979.

[1341] Thomas, J. 1., Taylor, S. L., and Anderson, W. K., "Navier/Stokes Computations of Vortical Flows
Over Low Aspect Ratio Wings," AIAA Paper 87-207, 1987.

[135) Shang, J. S., and Scherr, S. J. , "Navier/Stokes Solution of the Flow Field Around a Complete
Airplane," AIAA Paper 85-1509, 1985.

[136] Rai, M. M., "Navier/Stokes Simulations of Rotor-Stator Interaction Using Patched and Overlaid
Grids," AIM Paper 85-1519, 1985.

'II

(137] Shankar, V., and Chakravarthy, S., "Development and Application of Unified Algorithms for Problems
in Computational Science," NASA CP 2454, 1987.

11381 Chaussee, D., Rizk, Y., and Buning, P., "Viscous Computation of a Space Shuttle Flow Field," Ninth
International Conference on Numerical Methods in Fluid Dynamics, June 1984. (See also NASA TM 85977,
1984.)

[139] Flores, J., Holst, T., Kaynak, U., Grundy, K., and Thomas, S., "Transonic Navier/Stokes Wing
Solution Using a Zonal Approach. Part 1. Solution Methodology and Code Validation," AGARD CP 412, 1986.

[140] MacCormack, R., "Current Status of Numerical Solutions of the Navier/Stokes Equations," AIAA Paper
85-032, 1985.

[141] Benek, J. A., Donegan, T. L., and Suhs, N. E., "Extended Chimera Grid Embedding Scheme with
Applications to Viscous Flows," Proceedings of the AIAA CFD Conference, 1987.

[142] Newsome, R. W., and Adams, M. S., "Numerical Simulation of Vortical Flow over an Elliptical Body
Missile at High Angle of Attack," AIAA Paper 86-559, 1986.

[143] Fujii, K., and Schiff, L., "Numerical Simulation over a Strake-Delta Wing," AIAA Paper 87-1229,
1987.

[144] Coakley, T., "Numerical Method for Gasdynamics Combining Characteristics and Conservation
Concepts," AIAA Paper 81-1257, 1981.

[145] Viviand, H., "Conservation Forms of Gas Dynamic Equations," La Recherche Aerospatiaie, No. 1, 1974.

[146] Jameson, A., "Solutions of the Euler Equations for Two Dimensional Transonic Flow by a Multigrid
Method," Applied Math. and Computations, Vol. 13, 1983.

[147] Jespersen, 0. C., "Recent Developments in Multigrid Methods for the Steady Euler Equaticons," VKI
Lecture Series on CFD, Belgium, 1984.

£148] Van Dalsem, W., and Steger, J., "The Fortified Navier/Stokes Approach," Workshop on CFD,
University of California-Davis, June 1986.

[149] Beam, R. M., and Warming, R. F., "An Implicit Finite Difference Algorithm for Hyperbolic Systems
in Conservation Law Form," J. Comp Phy, Vol. 22, 1976.

[150) Warming, R., and Beam, R., "On the Construction and Application of Implicit Factored Schemes for
Conservation Laws," SI 4-AMS Proceedings, Vol. 11, 1977.

11] Pulliam, T., and Steger, J., "Recent Improvements in Efficiency, Accuracy, and Convergence of an
Implicit Approximate Factorization Algorithm," AIAA Paper 85-360, 1985.

[152] Steger, J. and Warming, R., "Flux Vector Splitting of the Inviscid Gasdynamic Equations with
Applications to Finite Difference Methods," J. Comp Phys, Vol. 40, 1981.

[153] Van Leer, B., "Flux Vector Splitting for the Euler Equations," Proc. 8th International Conference
on Numerical Methods in Fluid Dynamics, Springer, 1982.

[154] Anderson, W. K., Thomas, J. L., and Van Leer, B., "A Comparison of Finite Volume Flux Vector
Splittings for the Euler Equations," AIAA Paper 85-122, 1985.

[155] Thomas, J., and Walters, R., "Upwind Relaxation Algorithms for the Navier/Stokes Equations," AIAA
Paper 85-1501, 1985.

[156] Ying, S., Steger, J., Schiff, L., and Baganoff, D., "Numerical Simulation of Unsteady Viscous High
Angle of Attack Flows Using a Partially Flux-Split Algorithm," AIAA Paper 86-2179, 1986.

[157] Chakravarthy, S., "Euler Equations-Implicit Schemes and Implicit Boundary Conditions," AIAA Paper
82-22;, 1982.

[158] Chaussee, D., and Pulliam, T., "A Diagonal Form of an Implicit Approximate Factorization Algorithm
with Application to a Two Dimensional Inlet," AIAA J., Vol. 19, 1981.

[159] Barth, T., and Steger, J., "An Efficient Approximate Factorization Implicit Scheme for the
Equations of Gasdynamics," NASA TM 85957, 1984.

[160] Gentzsch, W., "Vectorization of Computer Programs with Applica'ion to Computational Fluid
Dynamics," Vieweg, 1984.

[161] Reddy, K., "Pseudospectral Approximation in a Three Dimensional Navier/Stokes Code," AIAA J., Vol.
21, 1983.

[162] Yee, H., Warming, R., and Harten, A., "Implicit Total Variation Diminishing (TVDI Schemes for
Steady-State Calculations," NASA TM 84342, 1983.

[163] Yee, H., and Harten, A., "Implicit TVD Schemes for Hyperbolic Conservation Laws in Curvilinear
Coordinates," AIM Paper 85-1513, 1985.

182

[164] Chow, L., Pulliam, T. , and Steger, J. , 'A General Perturbation Approach for Computational Fluid
Dynamics," AIAA J., Vol. 22, 1984.

[165] Israel, M., and Ungarish, N., "Improvements of Numerical Solutions by Incorporation of Approximate
Solutions Applied to Rotating Compressible Flows," Proceedings 7th International Conference on Numerical
Methods in Fluid Dynamics, Springer, 1980.

(166] Nakahashi, K., and Obayashi, S., "Viscous Flow Computations Using a Composite Grid," Proceedings
AIAA 8th CFD Conference, 1987.

A I

APPENDIX A
AN INFORMAL GLOSSARY OF TERMS

USED IN SUPEECOKPUTING

A. 1 INTRODUCION

This informal glossary of terms associated with supercomputing evolved casually. The
primary draft was made by K. Neves in 1986 for the IEEE Subcommittee on Supercomputing.
This draft benefited greatly from review and revision by fellow members of the committee
(namely, A. Brenner, D. Lawrie, S. Perrenod, J. Riganati, S. Saphier, and P. Schneck.)
In addition, terms have been added and revised by the authors of this monograph. Any
rapidly advancing field generates its own new terminology and jargon. The new terms
arise by applying new meanings to older terms as well as through the "coining" of new
terminology. The process is dynamic and often results in dual meanings of commonly used
words and sometimes just plain fuzzy definitions. Nevertheless, the authors believe
this tabulation will a) help both novices and experts to better communicate, and b)
provide input to more formal dictionary/definition writing processes.

A.2 TERS AND DEFINITIONS

AUTOVECTOfIZATION: The ability of a compiler to generate object code which utilizes
vector hardware, vector firmware, or vector microcode, starting from standard (e.g.
Fortran 77) source language.

AMDAHL'S LAW: When dealing with high performance hardware, one often encounters
concurrency in computation. This is usually achieved through pipelined arithmetic units
or parallel cpus. In either case, the achievable performance is a function of the amount
of the computation that can be placed in the high performance mode. So, for example, if
the potential speed up is 10 to one, running in parallel or in vector mode, then if all
the computation is moved to the high performance process, things will run in one tenth
the time. However, if only 75% were moved to the high performance process, the total
time would be reduced to about 32.5% of its former value. This domination of the slower
process is often referred to as Amdahl's Law. A more formal definition for parallel and
vector computers is given by the following formulae:

Amdahl's Law (Vector Computers):

Let V be the vector speed of a process and S be the scalar speed.
Then the final gain in speed, G, of a process that is P percent
vectorized is given by

-1
G = [(l-P) + P/R) , where R = V/S

A plot of G versus P when V is ten times S reveals the familiar
Amdahl-Curve.

V-!

! R 1 0

G
RlO*

!- **
S-.*

0 .5 1

P

Amdahl's Law (Parallel Computers):

Let N be the number of parallel processors, and P the percentage of
the work performed simultaneously (ignoring any new overhead

A-2

introduced) on the N processors. Then the speedup, S attained in

performance is given by

partial parallel speed -i
S = ----------- 1 - P + P/N I

single processor speed

If one fixes N and plots S versus P, the percentage of
parallelization, the familiar curve below is obtained.

N-!

N 10

S

i-!*

0 .5

ARRAY PROCESSORS: These are attached processors. That is, they usually require a ncst
computer to interface to the user. They are essentially "subroutine boxes". Drten they
are programmable through microcode, and sometimes higher languages. They achieve r, gh
performance relative to their hosts on specific tasks, e.g., seismic processing. Their
computing engines are typically composed of pipelined arithmetic units and over-lapped
functional units.

BANK CONFLICT: Since memory chip speeds are relatively slow when required to deliver a
single word, supercomputer memories are placed in a large number (usually a power of 2)
of independent banks. A vector laid out contiguously in memory (one component per
successive bank) can be accessed at one word per cycle despite the intrinsic slowness of
memory chips to deliver a single word. The result is the "pipelined" delivery of
vectors component words at high bandwidth (after first word initial latency). The "bank
cycle time" is the number of clock periods (or seconds) a given bank must wait before a
successive access can be fulfilled. When the number of banks is a power of 2, then
vectors requiring strides of a power of 2 can often run into bank busy-wait situation.
This often termed a bank conflict. As an example, imagine a 64-bank memory with an 8-
clock cycle time. if one accesses every 16th element in a contiguously stored vector, a
bank conflict will occur in for cycles (clock periodsi. The result would be that every
four fetches, a four cycle wait would occur causing an overall reduction in performance
of a factor of two. Such conflicts can also occur randomly and more frequently in
multiple CPU machines that share a common memory. It is also possible for one CPU to
access banks so efficiently as to block out the other CPUs.

CACHE: Large memory requirements often lead to dense iut slow memories. Memory
throughput is high for large amounts of cata, but for individual or small amounts nf
data, the fetch times can be very long. To overcome this computer architects use
smaller interface memories with better "fetch" speeds. These are often called CACHE
memories. The term is more often used when these memories are a required interface to,
say, main memory. If the required data is already stored in the cache, fetches are
fast. If the required data is not in the cache, a "cache miss" occurs and results in
cache being refilled from main memory at the expense of time. Their use is usually made
transparent to the user and takes advantage of the fact that a reference to a given area
of main memory for one piece of data or instruction is usually closely followed by
several additional references to that same area for other data or instructions: thus,
maximizing the potential for cache "hits." This "prefetch" process is managed by the
firmware of the computer system.

CHAINING: The ability to take the results of a vector operation and use them directly
as input operands ii a further vector instruction; thus alleviating the need for
additional store and fetch instructions. This chaining or "linking" of two vector
floating point operations, for example, could double the asymptotic MFLOP rate.

COOLING TECHNOLOGY: At the high performance end of computing, speed is related directly
to the density of chip packaging. Dense packaging usually produces unusual cooling
requirements. The technology of cooling supercomputers takes many forms from air
coolinq (Fujitsu VP 20t, Hitachi S-820), water cooling (NEC SX/2), freon (CRAY 1, X-MP),
flourinert submersion 'CRAY-2), and cryogenic cooling via liquid nitrogen immersion
(ETA-10). Cooling technology has become a critical part of advanced computer design.

A\-

IPRESS/INDEX: This is a "vector" operation which is used to deal with the non-zeros
of a large vector with relatively few non-zeros. The location of the non-zeros is
indicated by an index vector (usually a bit vector of the same length, in bits, as the
full vector, in words). The COMPRESS operations gathers the non-zeros into a dense
vector according to the index vector. This operation is usually order M, where M is the
length of the full vector, and the resulting dense vector is of length N, the number of
non-zeros. This is different than the true gather/scatter operations which are order N
(see gather/scatter).

DRYS7I0ES: Established as a non-numeric counterpart to the Whetstone benchmark suite.
(See Whetstone.)

DISK STRIPING: Multiplexing or interleaving a data set (disk file) across 2 or more
disk drives to enhance I/O performance. The performance gain is at most equal to the
minimum of the number of drives and channels used.

DISTRIBUTED PROCESSING: Processing on a number of computers networked in some fashion.
One of the distinguishing features of distributed processing is the absence of a shared
main memory. One typically infers the computers are of different relative power and
function. For example, a supercomputer, a mini-computer, and a work station all
providing computation for a single application in such a way that the process is
distributed over all the vehicles as appropriate.

FIFTH GEIERATION: The Japanese Al initiative to build a super Al processor with high
LIP throughput. Also the next technological "generation".

FLOPS: Floating point (arithmetic) operations per second.

GATHER/SCATTER: The operations related to large sparse data structures. A full vector
with relatively few non-zeros is transformed into a vector with only the non-zeros with
a "gather" operation. The full vector or one with the same structure is built from the
inverse operation, the "scatter". The process is accomplished with an index vector.
The index vector is usually of length N, the number of non-zeros with each component
being the relative location in the full vector. This is in sharp contrast to the index
vector of the "compress" operation where the index vector is bit oriented of length M,
the length of the full vector, with only ones or zeros in each component to indicate
whether there is an associated non-zero in the full vector.

GLOBAL MNEORY: Main memory accessible by all processors or CPUs.

GRANULARITY: Most applications can be broken down into sub-processes. Fine granularity
is illustrated by execution of statement or small loop iterations as separate processes,
where coarse granularity would invoive subroutines or sets of subroutines as a group as
separate process. The term is often used in parallel processing to indicate independent
processes which could be distributed to multiple CPUs. Typically the more processes
there are, the "finer" the granularity and the more overhead in keeping track of them.
Granularity can also be considered to be related to the temporal duration of a "chunk"
of work. It is not only the number of processes but how much work each process does
relative to the time of synchronization that determines the overhead and reduces speedup
figures. Since the granularity is related to the overhead of synchronization, it is
necessarily machine dependent. Granularity could be defined as the ratio of task
computation time versus synchronization time. If the ratio is large, the granularity is
high and the expense of synchronization is minimized.

HYPERCUBE ARCHITTRE: multiple CPU architecture with 2**N processors. Each CPU has N
nearest neighbors in a manner similar to a "hypercube" where each corner has N edges.
The 2**3 machine would have 8 CPUs arranged at the corners of a cube connected by the
edges, as illustrated below.

113 i1

/! I!
/ /!/ /

/ /
/ /
/ / !
/ I /

010 *----------------------* 011

1 00 1 01

10----------------------------*10

S /
S / . /

, ! /
/ , I

!I !I

000 001
Hypercube, N=3

A--A

A-4

INTERACTIVE VECTORIZER: An interactive program to aid a user in vectorizing his source
code. The program usually analyzes the source for loops and sequences of operations
that can be accomplished using vector instructions or macrcs. When obvious obstructions
to vectorization are found the user is informed through interaction of the problem.
Quite often the user can indicate that a vector reference which has a potential
recursive reference is "safe" or the user can remove an "IF-test", branch or subroutine
call, to achieve vectorization.

INTERNAL THROUGHPUT RATE, ITR: actual job stream processing time including all aspects
of the computer, I/O, O/S etc.

INTER-PROCESSOR CONITION: Contention by multiple CPUs for shared system resources.
For example, in global memory architectures memory bank conflicts for a user's code are
caused by other processors running completely independent applications.

LIPS: Logical inferences per second. One LIPS is essentially a PROLOG procedure call
and was originally defined by the Japanese when they announced their Fifth Generation
program in the Fall of 1981.

LOCAL MIORY: The memory associated with a single CPU in a multiple CPU architecture,
or memory associated with a local node in a distributed system.

LOOP UNROLLING: An optimization technique valid for both scalar and vector
architectures. The iterations of an inner-loop are decreased by a factor of 2 or more
by by explicit inclusion of the very next or next several iterations. This allows the
compiler to make better use of the registers (avoiding some memory references) and
better overlap operations. On vector machines loop unrolling may either improve or
degrade performance. Thic involves a tradeoff between overlap and register use on the
one hand and vector length on the other.

PELOPS, MEEGA FLOPS: Millions of floating-point (arithmetic) operations per second. A
common rating of supercomputers (and vector instruction machines). Some have used the
euphemism "macho FLOP" to indicate the fact that MFLOP ratings are performance measures
that indicate what a machine cannot eyceed in performance, rather than indicate actual
performance. There is generally a large variance between a !upercomputer's peak MFLOP
rating and its typical sustained MFLOP performance on an actual algorithm or
application. It is also worthy to note that different computers behave differently when
it comes to achieving "close" to peak performance. On one computer it may be very
difficult to design an algorithm to achieve 30% of peak, while on another the same
algorithm can be implemented easily and achieve 70% peak perfarmance.

MAIN MEMORY: A Level of rdndom access memory which lies between cache/register memory
on the one end and extended random access memory on the other. Main memory nas higher
capacity, but is slower than cache or registers, and is less capacity, but faster access
than extended random access memory. Unfortunately, some newer supercomputer models have
introduced another layer or tier of memory structure and what is cache, main, extended
is getting somewhat muddled.

KINISUPERCQWPUTER: a machine with roughly 1/10 to 1/2 the performance of a
supercomputer at roughly 1/10 the price. Minisupers use a blend of minicomputer
technology and supercomputer architectural "tricks" (i.e. pipelining, vector
instructions, parallel CPUs) to achieve attractive price performance characteristics.

MIND: Multiple instruction stream/multiple data stream ,rchitecture (or process). In an
MIMD machine multiple instruction streams are simultaneously in execution. Each single
instruction may handle multiple data elements (e.g., one or more vectors in a vector
machine). While single processor vector computers are able to operate in MIMD mode due
to overlapped functional units, this terminology is more generally used to refer to
multiprocessor machines.

MIPS: Millions of instructions per second.

MOPS: Millions of operations per second.

MULTIPROCESSING: See Multitasking.

MULTIPROGRMMING: See Multitasking.

MULTIPROCESSOR: A single computer system with more than one CPU. isualiy the CPUs
would be more tightly coupled than simply sharing a local area network. For example,
CPUs sharing main memory or file system would be called a multiprocessor.

MULTITASKING: The terms multiprogrammng, multiprocessing, and rultitasking are often
used interchangeably (with a notable lack of precision) to describe three different
concepts: The use of more than one processor; the commingling of different programs on
one or more processors; and the execution of multiple tasks from the same program or one
or more processors. No rigorour definitions exist, but generally, the ter7
"multiprogramming" refers to the aLility of a computer to commingle more than one
program on at least one CPU. "Multitasking" is often used to mean the same thing, out

more recently has also been used to mean the simultaneous execution of several tasks
from the same program on two or more CPUs. "Multiprocessing" is also used to indicate
the ability of a computer to commingle jobs on one or more CPUs. More recently, it is
also used as a synonym for multitasking.

N112 (N SUB A HALF): The length of a vector required (for a given vector operation or
sequence of operations) to achieve one half the peak performance race. (Defined by Roger
Hockney along with a number of other interesting parameters in a monograph on Parallel
Processing.) Large N SUB A HALVES indicated a great deal of overhead associated with
vector startup. A rule of thumb is that if the average vector ength is 3 times N SUB A
HALF, one is being very efficient; while if the vector length is less than N SUB A HALF,
one is being inefficient. (All quite qualitative)

OPTIMIZE: Achieve peak possible performance for a process, or a number of related
processes. More loosely applied whenever a procedure imnroves, even modestly, a
previous attempt.

PARALLEL PROCESSING: Processing with more than one CPU on a si:_3le applicatj'n simultan-
eously.

PARALLELIZATION: The process of achieve a high percentage of the CPU time expended in
parallel. That is, minimizing idle CPU time in a parallel processing environment. For
a specific program, parallelization refers to the splitting of its execution-tasks among
available CPUs.

PARTITIONING: Restructuring a program or algorithrr, ir. semi-independent computational
segments to take advantage of multiple CPUs simultaneously. The goal is to achieve
roughly equivalent work in each segment wit. minimal need for inter-segment
communication. It is also worthwhile to have fewer segments than CPUs on a dedicated
system.

PERCENTAGE PARALLELIZATION: The percent of CPU expenditure being processed in parallel
on a single job. It is usually impossible to achieve 100% of an application's
processing time to be equally shared on all CPUs. A related question, is a reliable
measure of efficiency which is beyond the scope of this discussion.

PERCENTAGE VECTORIZATION: Percentage of an application running in "vector mode". This
may be calculated in two ways: 1) as a percentage of CPU time; 2) as that percentage of
lines of code (usually Fortran) which are coded into vector instructions. The two
usages are not consistent and may give very different results. The first definition
will lead to clear performance improvement as measured by CPU time, while the second
method is confined to measure the "success rate" of the compiler in converting scalar
code to vector code (however dubious). The former is a hardware performance measure,
and the latter is a compiler performance measure.

PIPELINING: Any execution of a sequence of data sets (possibly instructions) by a single
processor, in such a way that subsequent data elements (instructions) in the sequence
can begin execution before previous elements have completed execution, with all such
elements executing at the same time--an assembly line approach. In modern
supercomputers the floating point operations are often pipelined alona with memory
fetches and stores of the "vector" data sets. (The Denelcor HEP is an example of
pipelined instruction sets, the Japanese Supercomputers, the 3090/VF, CRAY and Cyber 20C
series give examples of pipelined arithmetic units.)

PRIMARY MEMORy: Main memory accessible by the CPU(s) without using 1 0 processes.

R-INFINITY: The asymptotic rate of a vector operation as vector length approaches
infinity (originally defined by Hockney and Jessophe in their text on parallel
processing.)

RECURRENCE: A dependency in a DO-loop whereby a result depends on completion of the
previous iteration of the loop. Such references inhibit vectorization. For example,

A(I) = A(I-1) + B(I)

in a loop on I, would not be vectorizabie on irost vector computers (without marked
degradation in performance). This is ot a axiom or law, simply a fact. There arc
manufacturers toying with the idea of vectorizing simple recurrence3 of this type. in
fact, several Japanese compiler address the construct with a combination of hardware and
software. Quite often, however, such recurrences can be avoided or done simultaneously
to achieve vectorizable computations.

RISC: RISC refers to a philosophy of instruction set design where a s-.ail number of
simple, fast instructions are implemented instead of a larger number of slower, -ore
complex instructions. RISC is becoming a marketing term, and considerable controversy
exists as to which machines adhere to the RISC philosophy and which do not.

Shk.ONDARY M 'JRY: Often larger and slower memory than primary memory (see primary
memory) and often requires special instructions (e.g. 1/0 instructions) to access.

A.A

A-6

SIND: Single instruction stream/multiple data stream. Characterize., most of today's
vector computers. A single instruction initiates a process that causes streams of data
and results to be set in motion. The term is also applicable to parallel processors
where one instruction causes N processors to (often synchronously) perform the same
operation on perhaps different pieces of data (e.g., ILLIAC).

SISD: Single instruction stream/single data stream. Traditional scalar architecture.

SPEED UP: Term often used related to vector and/or parallel processing. The idea is to
give a factor of performance improvement over pure scalar performance. The reported
numbers are often misleading due to inconsistency in reporting the upeedup over a
revised process running in scalar mode or the original process running in scalar mode.
The term is usually applied to performance on the same CPU versus multiple but identical
CPUs or vector vs. scalar process on the same machine.

STRIDE: A term often used relative to vector storage. A mathematical "vector" is
simply an array of numbers. For a computer, an array of numbers is simply data whose
location is prescribed according to some formula. Vector computers often reference
"computer" vectors according to differing conventions. Some computers, notably a CYBER
205, refer to vectors by first word location and length. This is "contiguous" storage
of a vector. Unfortunately, many applications in matrix analysis require the fetch and
store of vectors whose components do not reside contiguously in memory. An example is
the row of a column-stored matrix. The matrix is stored contiguously, but the rows have
elements that are spaced in memory by a STRIDE of N, the dimension of the matrix. This
is often termed "regularly stored with stride of N." To complete the picture, some
vector computers allow vector fetch and stores to occur with randomly stored vectors,
i.e., first word and an index vector which maps the relative location of successive
components. This is often useful in storing the non-zero elements of a sparse vector.
The term is mnemonic, being derived from the concept of walking (striding) through the
data from one non-contiguous location to the rcx.

SUPERC(IPUTER(S): The class of general purpose computers that are both faster than
their commercial competitors AND have sufficient central memory to store the problem
sets for which they are designed. The issue of "c-omputer power" in large-scale
scientific processing is a complex topic. Computer memory, throughput, computational
rates, and a host of related computer attributes contribute to performance.
Consequently, a quantitative measure of computer power does not exist, and a precise
definition of supercomputers is difficult.

TRUE RATIO: A frequent bottleneck to vectorization of scientific programs i- the
Fortran IF-test. Quite often the successful branch is executed only once in awhile in
what could be a highly vectorizable "loop". The term TRUE RATIO is used to characterize
the frequency the branched condition occurs. If the true-ratio is small, some compilers
can take effective action. The problem is that the TRUE RATIO is often data dependent
and can't effectively be dealt with automatically.

VECTOR: An array of numbers whose location is prescribed according to some formula
(e.g., contiguously or randomly). see STRIDE. One may distinguish a computer vector
from a mathematical vector--the latter is simply a set of numbers (components) with no
conditions on their retrievability from computer memory.

VECTOR PROCESSING: Modern supercomputers achieve speed through pipelined arithmetic
units. This coupled with instructions designed to process vectors or arrays of numbers
rather than each data pair one at a time, leads to great performance improvements.
Since computers with this design deal with vectors, the "art" of using such machines has
been called VECTOR PROCESSING.

VECTORIZATION: The act of tuning an application code to take advantage of vector
architecture; see percentage of vectorization.

WHETSTONE: A benchmark suite established and maintained by CCTA (an element of the
British Post Office). Based on experience with the KDF-9 (and its Whetstone system),
this benchmark set was established. It exists in two forms -- Whetstone I for 32-bit
floating point operations and Whetstone II for 64-bit floating point operations. The
code is highly floating point intensive, yet not very amenable to vectorization. Large
machines such as the CRAY series can execute some millions of Whetstones per second.

!k

-REPORT DO0CUMENTAT-ION PAGE

I. -Recipient's Refer-ence -2.Ori-ginator's Reference 3. Further Reference 4. Securit lassification
of Document

AGARD-AG-311I ISBN 92-835-0448-8 UNCLASSII-FID

5. 0nginator AdvioryGroup forAerospace Research and Ievelopmcnt
North Atlantic Treaty' Organization
7 rue Ancelle, 92200O Neujilly sur Seine. France

Title COMPUTATIONAL FLUID DYNAMICS: ALGORITHMS &
SUPERCOMPUTERS

7. Presented at

8. Athors)/dito~s)9. Date
W.Gentzsch and K.W.Neves
Edited by HLYoshihara March 198

10. Author's/Editor's Address 1i. Pages

Various 19

1i2. Distribution Statement This document is distributed in accordance with AiA RD)

policies and regulations. which arc outlined on the
Outside Back Covers of all AGARI) publications.

13. Keywords/Descriptors

Navier/Stokes Vector programming
Algorithms Bcnchmarking
Supercomputers Mini-supercomputcrs

14. Abstract

Cost-effective vectorization of fluid dynamic codes, in particular the Navici /Stokcs Code, is
covered relative to the supercomputer architecture. Subjects include current supercomputer
architecture; minisupercomputers. impact of hardware on computing: software migration issues:
bcnchmarking: guidelines on Fortran veciorization at the do-loop level: restructuring of basic linear
algebra algtrithms: and restructuring guidelines for basic fluid dynamic codes. A glossary of
supercomputing terms is given in the Appendix. .

<~ E -

<< E

'0-

-Cc

z ,-

V. r- cn

0 t .- .

>L>E- - -u

V) .

6) 6 O 6
U 4 v LL

z< z Q v Z CL -

1. -F .E

E E ~E
< u< 2~~%

L' E C. o o

<___________ E~ .oa E 2 2

-0 0

CL

< m

~ 2 2 -

u 7

06-
0ob

< < <

I75

I2 72

E~ E)

<c *
<). UU. C

Z~

